Modelling cell shape in 3D structured environments: A quantitative comparison with experiments.

Bibliographic Details
Title: Modelling cell shape in 3D structured environments: A quantitative comparison with experiments.
Authors: Link, Rabea1,2 (AUTHOR), Jaggy, Mona3 (AUTHOR), Bastmeyer, Martin3,4 (AUTHOR), Schwarz, Ulrich S.1,2 (AUTHOR) schwarz@thphys.uni-heidelberg.de
Superior Title: PLoS Computational Biology. 4/4/2024, Vol. 20 Issue 4, p1-21. 21p.
Subject Terms: *CELL morphology, *POTTS model, *GEOMETRIC surfaces, *CELL physiology, *SEPARATION of variables, *CELL migration, *CELL sheets (Biology)
Abstract: Cell shape plays a fundamental role in many biological processes, including adhesion, migration, division and development, but it is not clear which shape model best predicts three-dimensional cell shape in structured environments. Here, we compare different modelling approaches with experimental data. The shapes of single mesenchymal cells cultured in custom-made 3D scaffolds were compared by a Fourier method with surfaces that minimize area under the given adhesion and volume constraints. For the minimized surface model, we found marked differences to the experimentally observed cell shapes, which necessitated the use of more advanced shape models. We used different variants of the cellular Potts model, which effectively includes both surface and bulk contributions. The simulations revealed that the Hamiltonian with linear area energy outperformed the elastic area constraint in accurately modelling the 3D shapes of cells in structured environments. Explicit modelling the nucleus did not improve the accuracy of the simulated cell shapes. Overall, our work identifies effective methods for accurately modelling cellular shapes in complex environments. Author summary: Cell shape and forces have emerged as important determinants of cell function and thus their prediction is essential to describe and control the behaviour of cells in complex environments. While there exist well-established models for the two-dimensional shape of cells on flat substrates, it is less clear how cell shape should be modeled in three dimensions. Different from the philosophy of the vertex model often used for epithelial sheets, we find that models based only on cortical tension as a constant geometrical surface tension are not sufficient to describe the shape of single cells in 3D. Therefore, we employ different variants of the cellular Potts model, where either a target area is prescribed by an elastic constraint or the area energy is described with a linear surface tension. By comparing the simulated shapes to experimental images of cells in 3D scaffolds, we can identify parameters that accurately model 3D cell shape. [ABSTRACT FROM AUTHOR]
Copyright of PLoS Computational Biology is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Premier
Full text is not displayed to guests.
Description
Description not available.