Showing 1 - 20 results of 466 for search 'FOLLICLE-stimulating hormone receptor' Narrow Search
15
Academic Journal

Superior Title: Obstetrics, Gynecology and Reproduction; Vol 17, No 5 (2023); 607-624 ; Акушерство, Гинекология и Репродукция; Vol 17, No 5 (2023); 607-624 ; 2500-3194 ; 2313-7347

File Description: application/pdf

Relation: https://www.gynecology.su/jour/article/view/1826/1154; Babakhanzadeh E., Nazari M., Ghasemifar S., Khodadadian A. Some of the factors involved in male infertility: a prospective review. Int J Gen Med. 2020;13:29–41. https://doi.org/10.2147/IJGM.S241099.; Hanson B.M., Eisenberg M.L., Hotaling J.M. Male infertility: a biomarker of individual and familial cancer risk. Fertil Steril. 2018;109(1):6–19. https://doi.org/10.1016/j.fertnstert.2017.11.005.; Okonofua F.E., Ntoimo L.F.C., Omonkhua A. et al. Causes and risk factors for male infertility: a scoping review of published studies. Int J Gen Med. 2022;15:5985–97. https://doi.org/10.2147/IJGM.S363959.; White W.M., Mobley J.D., Kim E.D. Varicocele: Practice Essentials, History of the Procedure, Problem. Medscape, 2023. Available at: https://emedicine.medscape.com/article/438591-overview.; Carson S.A., Kallen A.N. Diagnosis and management of infertility. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.; Sudhakar D.V.S., Shah R., Gajbhiye R.K. Genetics of male infertility – present and future: A narrative review. J Hum Reprod Sci. 2021;14(3):217–27. https://doi.org/10.4103/jhrs.jhrs_115_21.; Colaco S., Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14. https://doi.org/10.1186/s12958-018-0330-5.; Wong R., Gu K., Ko Y., Patel P. Congenital absence of the vas deferens: cystic fibrosis transmembrane regulatory gene mutations. Best Pract Res Clin Endocrinol Metab. 2020;34(6):101476. https://doi.org/10.1016/j.beem.2020.101476.; Silva M.S.B., Giacobini P. New insights into anti-Müllerian hormone role in the hypothalamic–pituitary–gonadal axis and neuroendocrine development. Cell Mol Life Sci. 2021;78(1):1–16. https://doi.org/10.1007/s00018-020-03576-x.; Kaiser U.B., Sabbagh E., Katzenellenbogen R.A. et al. A mechanism for the differential regulation of gonadotropin subunit gene expression by gonadotropin-releasing hormone. Proc Natl Acad Sci U S A. 1995;92(26):12280–4. https://doi.org/10.1073/pnas.92.26.12280.; Plunk E.C., Richards S.M. Endocrine-disrupting air pollutants and their effects on the hypothalamus-pituitary-gonadal axis. Int J Mol Sci. 2020;21(23):9191. https://doi.org/10.3390/ijms21239191.; Fink J., Schoenfeld B.J., Hackney A.C. et al. Human chorionic gonadotropin treatment: a viable option for management of secondary hypogonadism and male infertility. Expert Rev Endocrinol Metab. 2021;16(1):1–8. https://doi.org/10.1080/17446651.2021.1863783.; Cangiano B., Swee D.S., Quinton R., Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet. 2021:140:(1):77–111. https://doi.org/10.1007/s00439-020-02147-1.; Yao Q., Chen Y., Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–7. https://doi.org/10.1016/j.cbpa.2019.01.024.; Di Palo A., Siniscalchi C., Salerno M. et al. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci. 2020;77(20):4069–80. https://doi.org/10.1007/s00018-020-03526-7.; Batool A., Liu X.-M., Zhang C.-L. et al. Recent advances in the regulation of testicular germ cell tumors by microRNAs. Front Biosci (Landmark Ed). 2019:24(4):765–76. https://doi.org/10.2741/4749.; Munawar M., Liaqat I., Ali S. et al. MicroRNAs and male infertility. In: Recent Advances in Noncoding RNAs. Ed. L. Tutar. IntechOpen, 2022. https://doi.org/10.5772/intechopen.106757. Available at: https://www.intechopen.com/chapters/83297.; Casteel C., Singh G. Physiology, gonadotropin-releasing hormone. StatPearls, 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK558992/.; Haldar S., Agrawal H., Saha S. et al.Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci. 2022;18(2):675–92. https://doi.org/10.7150/ijbs.63721.; Mann O.N., Kong C.-S., Lucas E.S. et al. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep. 2022;12(1):8624. https://doi.org/10.1038/s41598-022-12495-9.; Hanssens L.S., Duchateau J., Casimir G.J. CFTR protein: not just a chloride channel? Cells. 2021;10(11):2844. https://doi.org/10.3390/cells10112844.; Cioppi F., Rosta V., Krausz C. Genetics of azoospermia. Int J Mol Sci. 2021;22(6):3264. https://doi.org/10.3390/ijms22063264.; Sticht C., Torre C.D.L., Parveen A., Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239.; Li D., Knox B., Gong B. et al. Identification of translational microRNA biomarker candidates for ketoconazole-induced liver injury using nextgeneration sequencing. Toxicol Sci. 2021;179(1):31–43. https://doi.org/10.1093/toxsci/kfaa162.; Barreau C., Paillard L., Osborne H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2005;33(22):7138–50. https://doi.org/10.1093/nar/gki1012.; Loher P., Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 2012;28(24):3322–3. https://doi.org/10.1093/bioinformatics/bts615.; Brown G.R., Hem V., Katz K.S. et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 2015;43(Database issie):D36–42. https://doi.org/10.1093/nar/gku1055.; Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141.; Biesiada M., Purzycka K.J., Szachniuk M. et al. Automated RNA 3D structure prediction with RNAComposer. Methods Mol Biol. 2016;1490:199–215. https://doi.org/10.1007/978-1-4939-6433-8_13.; Li J., Zhang S., Zhang D., Chen S.-J. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics. 2022;38(16):4042–3. https://doi.org/10.1093/bioinformatics/btac426.; Yan Y., Zhang D., Zhou P.et al. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45(W1):W365–W373. https://doi.org/10.1093/nar/gkx407.; Li H., Huang E., Zhang Y. et al. HDOCK update for modeling protein-RNA/ DNA complex structures. Protein Science. 2022;31(11):e4441. https://doi.org/10.1002/pro.4441.; Yuan S., Chan H.C.S., Hu Z. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci. 2017;7(2):e1298. https://doi.org/10.1002/wcms.1298.; Agarwal A., Baskaran S., Parekh N. et al. Male infertility. Lancet. 2021;397(10271):319–33. https://doi.org/10.1016/S0140-6736(20)32667-2.; Agarwal A., Finelli R., Selvam M.K.P. et al. A global survey of reproductive specialists to determine the clinical utility of oxidative stress testing and antioxidant use in male infertility. World J Mens Health, 2021;39(3):470– 88. https://doi.org/10.5534/wjmh.210025.; Jafarinejad-Farsangi S., Jazi M.M., Rostamzadeh F., Hadizadeh M. High affinity of host human microRNAs to SARS-CoV-2 genome: an in silico analysis. Noncoding RNA Res. 2020;5(4):222–31. https://doi.org/10.1016/j.ncrna.2020.11.005.; Mukherjee M., Goswami S. Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding proteinmicroRNA interactions modulating genome stability in SARS-CoV-2. PLoS One. 2020;15(8):e0237559. https://doi.org/10.1371/journal.pone.0237559.; Aita A., Millino C., Sperti C. et al. Serum miRNA profiling for early PDAC diagnosis and prognosis: a retrospective study. Biomedicines. 2021;9(7):845. https://doi.org/10.3390/biomedicines9070845.; Nagirnaja L., Aston K., Conrad D. The genetic intersection of male infertility and cancer. Fertil Steril. 2018;109(1):20–6. https://doi.org/10.1016/j.fertnstert.2017.10.028.; Swerdlow A.J., Bruce C., Cooke R. et al. Infertility and risk of breast cancer in men: a national case–control study in England and Wales. Breast Cancer Res. 2022;24(1):29. https://doi.org/10.1186/s13058-022-01517-z.; Nam Y., Kang K. M., Sung S.R. et al. The association of stromal antigen 3 (STAG3) sequence variations with spermatogenic impairment in the male Korean population. Asian J Androl. 2020;22(1):106–11. https://doi.org/10.4103/aja.aja_28_19.; Zhou F., Lei Y., Xu X. LINC00355:8 promotes cell proliferation and migration with invasion via the MiR-6777-3p/Wnt10b axis in Hepatocellular Carcinoma. J Cancer. 2020;11(19):5641–55. https://doi.org/10.7150/jca.43831.; Bizzarri A.R., Cannistraro S. Investigation of a direct interaction between miR4749 and the tumor suppressor p53 by fluorescence, FRET and molecular modeling. Biomolecules. 2020;10(2):346. https://doi.org/10.3390/biom10020346.; Chen Z., Wei J., Li M., Zhao Y. A circular RNAs dataset landscape reveals potential signatures for the detection and prognosis of early-stage lung adenocarcinoma. BMC Cancer. 2021:21(1):781. https://doi.org/10.1186/s12885-021-08293-7.; Kamiński P., Baszyński J., Jerzak I. et al. External and genetic conditions determining male infertility. Int J Mol Sci. 2020;21(15):5274. https://doi.org/10.3390/ijms21155274.; Yoshizawa N., Sugimoto K., Tameda M. et al. MiR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol Lett. 2020;19(4);2677–84. https://doi.org/10.3892/ol.2020.11357.; Reza A.M.M.T., Choi Y.-J., Han S.G. et al. Roles of microRNAs in mammalian reproduction: From the commitment of germ cells to periimplantation embryos. Biol Rev Camb Philos Soc. 2019;94(2);415–38. https://doi.org/10.1111/brv.12459.; Abu-Halima M., Hammadeh M., Schmitt J. et al. Altered microRNA expression profilesof human spermatozoa inpatients with different spermatogenic impairments. Fertil Steril. 2013;99(5):1249–55.e16. https://doi.org/10.1016/j.fertnstert.2012.11.054.; Alves M.B.R., Celeghini E.C.C., Belleannée C. From sperm motility to sperm-borne microRNA signatures: new approaches to predict male fertility potential. Front Cell Dev Biol. 2020;8:791. https://doi.org/10.3389/fcell.2020.00791.; Tomic M., Bolha L., Pizem J. et al. Association between sperm morphology and altered sperm microRNA expression. Biology (Basel). 2022;11(11):1671. https://doi.org/10.3390/biology11111671.; Zhang L., Ding X., Nie S. et al.Association of hsa-miR-145 overexpression in human testicular cells with male infertility. Mol Med Rep. 2015;11(6):4365–72. https://doi.org/10.3892/mmr.2015.3273.; Gunes S., Arslan M.A., Hekim G.N.T., Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016;33(5):553–69. https://doi.org/10.1007/s10815-016-0682-8.; Sahoo B., Choudhary R.K., Sharma P. et al. Significance and relevance of spermatozoal RNAs to male fertility in livestock. Front Genet. 2021;12:768196. https://doi.org/10.3389/fgene.2021.768196.; Wang J., Liu S., Shi J. et al. The role of miRNA in the diagnosis, prognosis, and treatment of osteosarcoma. Cancer Biother Radiopharm. 2019;34(10):605–13. https://doi.org/10.1089/cbr.2019.2939.; https://www.gynecology.su/jour/article/view/1826