Showing 1 - 20 results of 38 for search 'lightning detection systems' Narrow Search
5
Academic Journal

Authors: Gubenko, I. M.Aff1, IDS1024856022010067_cor1, Rubinstein, K. G.Aff1, Aff2, IDS1024856022010067_cor2

Superior Title: Atmospheric and Oceanic Optics. 35(1):65-71

6
Academic Journal

Superior Title: Bulletin of Volcanology: Official Journal of the International Association of Volcanology and Chemistry of the Earth`s Interior (IAVCEI). 84(8)

12
eBook

Contributors: Karacostas, Theodore, editorAff1, Bais, Alkiviadis, editorAff2, Nastos, Panagiotis T., editorAff3

Superior Title: Perspectives on Atmospheric Sciences. :621-627

14
Academic Journal

Contributors: Torres Sánchez, Horacio, Aranguren Fino, Harby Daniel, PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN

File Description: application/pdf

Relation: H. Torres, El rayo en el trópico. Certezas temporales de investigación sobre el fenómeno del rayo, I. Bogotá: Universidad Nacional de Colombia, pp. 49-57, 2015.; V. Cooray, “Latitude dependence of peak lightning return stroke current- A theoretical explanation,” 34th Int. Conf. Light. Prot. ICLP 2018, pp. 4–6, 2018.; H. Torres, E. Perez, C. Younes, D. Aranguren, J. Montaña, and J. Herrera, “Contribution to Lightning Parameters Study Based on Some American Tropical Regions Observations,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 8, pp. 4086–4093, 2015.; J. C. Inampués, “Tormentas Eléctricas en Redes Inteligentes, Tesis de Maestría, Universidad Nacional de Colombia,” pp. 81–83, 2014.; D. M. Smith, L. I. Lopez, R. P. Lin, and C. P. Barrington-Leigh, “Terrestrial gamma-ray flashes observed up to 20 MeV,” Science (80-. )., vol. 307, no. 5712, pp. 1085–1088, 2005.; J. A. López Trujillo, “Investigación de las estructuras eléctricas y líderes de rayos en tormentas,” UNIVERSITAT POLITECNICA DE CATALUNYA BARCELONATECH, Tesis de Doctorado, pp 1-40, 2019.; F. Gerald et al., “Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin,” Science (80-. )., 1994.; D. M. Smith et al., “The RHESSI spectrometer,” Sol. Phys., pp. 1–3, 2002.; W. Rison, R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, “A GPS-based Three-Dimensional Lightning Mapping System: Initial Observactions in Central New Mexico,” vol. 26, no. 23, pp. 3573–3576, 1999.; W. Rison, P. Krehbiel, R. Thomas, T. Hamlin, and J. Harlin, “3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System,” ICOLSE 2001, pp. 1–6, 2001.; V. Cooray, The Lightning Flash, 2nd ed., vol. I. United Kingdom: The Institution of Engineering and Technology, pp 28-30, 195-240, 1999.; C. T. R. Wilson, “The electric field of a thundercloud and some of its effects,” Proc. Phys. Soc. London, vol. 37, no. 1, pp. 32d-37d, 1924.; G. . Simpson, “The Mechanism of a Thunderstorm,” Proc. R. Soc. London. Ser. A, vol. 114, pp. 376–401, 1927.; C. R. Maggio, T. C. Marshall, and M. Stolzenburg, “Estimations of charge transferred and energy released by lightning flashes,” J. Geophys. Res. Atmos., vol. 114, no. 14, pp. 1–18, 2009.; I. and S. D. O. Dieter Betz, Hans (Physics Department University of Munich), Schumann, Ulrich(Institut fu Physik der Atmosphare), Laroche , Pierre (Phisics, Lightning: Principles, Instruments and Applications, 1st ed. Germany: Springer, pp 117-122, 2009.; E. R. Williams, “The tripole structure of thunderstorms,” J. Geophys. Res., vol. 13, pp. 151–167, 1989.; M. Stolzenburg, W. D. Rust, and T. C. Marshall, “Electrical structure in thunderstorm convective regions 2. Isolated storms,” J. Geophys. Res. Atmos., vol. 103, no. D12, pp. 14079–14096, 1998.; J. A. López, J. Montanyà, O. A. Van Der Velde, N. Pineda, and A. Salvador, “Charge Structure of Two Tropical Thunderstorms in Colombia,” JGR Atmos., pp. 1–13, 2018.; M. G. Bateman, T. C. Marshall, M. Stolzenburg, and W. David, “Precipitation charge and size measurements inside a New Mexico mountain thunderstorm,” J. Geophys. Res., vol. 104, pp. 9643–9653, 1999.; E. C. IEC, Protection against lightning – Thunderstorm warning systems INTERNATIONAL STANDARD. Switzerland, 2016.; M. D. I. Knapp, “Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather,” Natl. Weather Dig., vol. 19, no. 2, pp. 35–42, 1994.; A. H. Perez, L. J. Wicker, and R. E. Orville, “Characteristics of cloud-to-ground lightning associated with violent tornadoes,” Weather Forecast., vol. 12, no. 3, pp. 428–437, 1997.; E. Williams, “The electrification of Severe Storms,” in Severe Convective Storms, 2001, pp. 527–561.; E. W. McCaul, D. E. Buechler, S. Hodanish, and S. J. Goodman, “The Almena, Kansas, tornadic storm of 3 June 1999: A long-lived supercell with very little cloud-to-ground lightning,” Mon. Weather Rev., vol. 130, no. 2, pp. 407–415, 2002.; K. C. Wiens, S. A. Rutledge, and S. A. Tessendorf, “The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure,” J. Atmos. Sci., vol. 62, no. 12, pp. 4151–4177, 2005.; A. Eloi and D. Blanch, “Lightning stroke clustering into cloud-to-ground lightning flashes,” Treb. Fi Grau, pp. 1–5, 2014.; J. Montanyà, “Understanding lightning leaders,” WOMEL 2016, pp. 1–7, 2016.; J. A. López et al., “First data of the Colombia lightning mapping array - COLMA,” 2016 33rd Int. Conf. Light. Prot. ICLP 2016, pp. 1–5, 2016.; O. A. Van Der Velde and J. Montanyà, “Asymmetries in bidirectional leader development of lightning flashes,” J. Geophys. Res. Atmos., vol. 118, no. 24, pp. 13504–13519, 2013.; R. J. Thomas, P. R. Krehbiel, T. Hamlin, J. Harlin, and D. Shown, “Observations of VHF source powers radiated by lightning,” Geophys. Res. Lett., vol. 28, no. 1, pp. 143–146, 2001.; N. R. Lund, D. R. Macgorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, “Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system,” Mon. Weather Rev., vol. 137, no. 12, pp. 4151–4170, 2009.; J. A. Caicedo, M. A. Uman, and J. T. Pilkey, “Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms,” J. Geophys. Res. Atmos., vol. 123, no. 2, pp. 1155–1178, 2018.; D. Aranguren, “Desempeño de Sensores de Campo Eléctrostático en Sistemas de Alerta de Tormentas,” Universidad Nacional de Colombia, Tesis de Doctorado, pp 34-41, 70-100, 2011.; X. M. Shao and P. R. Krehbiel, “The Spatial and temporal development of intracloud lightning,” J. Geophys. Res., no. 101, pp. 26641–26668, 1996.; J. A. Lopez, N. Pineda, J. Montanyà, Van der Velde Oscar, and Ferran Fabró, “Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array,” Atmos. Res., pp. 266–264, 2017.; M. Stolzenburg, L. M. Coleman, and T. C. Marshall, “Evolution of charge and lightning type in developing thunderstorms,” in 12th Internaional Conferens on Atmospheric Elec, Versailles, France, 2003.; L. M. Coleman et al., “Effects of charge and electrostatic potential on lightning propagation,” J. Geophys. Res. Atmos., vol. 108, no. D9, p. 109.4298, 2003.; M. Stolzenburg, T. C. Marshall, and P. R. Krehbiel, “Initial electrification to the first lightning flash in New Mexico thunderstorms,” J. Geophys. Res. Atmos., vol. 120, pp. 11253–11276, 2015.; J. D. Hill et al., “Correlated lightning mapping array and radar observations of the initial stages of three sequentially triggered Florida lightning discharges,” J. Geophys. Res. Atmos., vol. 118, no. 15, pp. 8460–8481, 2013.; K. L. Cummins, M. J. Murphy, and J. V Tuel, “Lightning detection methods and meteorological applications,” IV Int. Symppsium Mil. Meteorol., pp. 1–13, 2000.; C. T. . Wilson, “Investigations on Lighning Discharges and on the Electric Field of Thunderstrorms,” R. Soc., vol. CCXXI, pp. 73–115, 1920.; M. Feng, J. Xue, Y. Zhong, and Z. Yu, “Analysis of three-dimensional lightning data in a thunderstorm event,” 2015 Int. Symp. Light. Prot. XIII SIPDA 2015, pp. 297–300, 2015.; D. Aranguren, J. A. López, J. C. Inampués, H. Torres, and I. and S. D. O. Dieter Betz, Hans (Physics Department University of Munich), Schumann, Ulrich(Institut fu Physik der Atmosphare), Laroche , Pierre (Phisics, “Cloud-to-ground lightning activity in Colombia and the influence of topography,” J. Atmos. Solar-Terrestrial Phys., no. 154, pp. 182–189, 2017.; I. Look, U. S. Nldn, K. L. Cummins, S. Member, and M. J. Murphy, “An Overview of Lightning Locating Systems : History , Techniques , and Data Uses , With an,” vol. 51, no. 3, pp. 499–518, 2009.; https://repositorio.unal.edu.co/handle/unal/77614

17
Academic Journal

Contributors: Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. LRG - Lightning Research Group

File Description: 14 p.; application/pdf

Relation: http://www.sciencedirect.com; info:eu-repo/grantAgreement/MICINN/6PN/AYA2011-29936-C05-04; Pineda, N., Rigo, T., Montaña, J., Van Der Velde, O. Charge structure analysis of a severe hailstorm with predominantly positive cloud-to-ground lightning. "Atmospheric research", 10 Març 2016, vol. 178-179, p. 31-44.; http://hdl.handle.net/2117/85168

18
Dissertation/ Thesis

Contributors: Torres Sánchez, Horacio, PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN

Subject Geographic: Colombia

File Description: 1 recurso en línea (110 páginas); application/pdf

Relation: [1] Keraunos S.A.S., “Red Colombiana de detección total de rayos LINET,” Ficha técnica, 2016.; [2] UPME, “Plan de Expansión de Referencia. Generación -Transmission 2015-2029,” Ministerio de Minas y Energía, p. 616, 2016.; [3] COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS (CREG), “Resolucion no.097 (26 sep. 2008 ),” pp. 1–135, 9 2008.; [4] J. I. Chang and C.-C. Lin, “A study of storage tank accidents,” Journal of Loss Prevention in the Process Industries, vol. 19, no. 1, pp. 51 – 59, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950423005000641; [5] Aplicaciones tecnológicas. ¿cuáles son los efectos del impacto de un rayo sobre las estructuras y las líneas de servicio? [Online]. Available: https://at3w.com/blog/cualesson- los-efectos-del-impacto-de-un-rayo-sobre-las-estructuras-y-las-lineas-de-servicio/; [6] Reve. ¿cómo proteger la eólica frente a los rayos durante la temporada alta de tormentas eléctricas? [Online]. Available: https://www.evwind.com/2020/06/30/como-protegerla- eolica-frente-a-los-rayos-durante-la-temporada-alta-de-tormentas-electricas/; [7] COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS (CREG), “Circular no.036 ( 18 jun 201 ),” p. 1, 6 2008.; [8] D. Salvador, “Estudio de Descargas Eléctricas Atmosféricas sobre Aerogeneradores. Parte II,” Ph.D. dissertation, Universitat Politècnica de Catalunya., 6 2013.; [9] J. F. Castro Arango, “Metodología para la identificación de la estructura eléctrica típica del rayo en el trópico,” Ph.D. dissertation, Universidad Nacional de Colombia, 2019.; [10] H. Torres-Sánchez, El rayo: mitos, leyendas, ciencia y tecnolog{\’\i}a. Universidad Nacional de Colombia, Facultad de Ingenier{\’\i}a, 2002. [Online]. Available: https://books.google.com.co/books?id=o-OuYBUHXawC; [11] J. A. López Trujillo, “Investigación de las estructuras eléctricas y líderes de rayos en tormentas,” Ph.D. dissertation, Universitat Politècnica de Catalunya., 2019.; [12] biSmart. What do we do? - etl. [Online]. Available: https://blog.bismart.com/en/whatdo-we-do-etl; [13] O. A. Van Der Velde and J. Montanyà, “Asymmetries in bidirectional leader development of lightning flashes,” Journal of Geophysical Research Atmospheres, vol. 118, no. 24, pp. 504–13, 2013.; [14] R. I. Albrecht, C. A. Morales, C. M. Iwabe, M. F. Saba, and H. Höller, “Using lightning mapping array to evaluate the lightning detection signatures at different technologies,” International Conference on Atmospheric Electricity, ICAE 2014, no. June, pp. 15–20,2014.; [15] datosmundial.com. Clima en santander (colombia). [Online]. Available: https://www.datosmundial.com/america/colombia/clima-santander.php; [16] DANE, “Informe de coyuntura económica regional de santander - icer,” pp. 47–48,2001. [Online]. Available: https://www.dane.gov.co/files/icer/2001/santander/t1.pdf; [17] H. Torres, E. Perez, C. Younes, D. Aranguren, J. Montaña, and J. Herrera, “Contribution to Lightning Parameters Study Based on Some American Tropical Regions Observations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 8, pp. 4086–4093, 2015.; [18] H. Torres, O. Trujillo, F. Amortegui, F. Herrera, G. Pinzon, C. Quintana, D. Gonzalez, D. Rondon, M. Salgado, and D. Avila, “Experimental station to measure directly lightning parameters in tropical zone,” High Voltage Engineering, 1999. Eleventh International Symposium on (Conf. Publ. No. 467), vol. 2, pp. 177–180, 1999.; [19] R. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian,“Where are the lightning hotspots on earth?” Bulletin of the American Meteorological Society, vol. 97, no. 11, pp. 2051–2068, 2016.; [20] M. Ishii, M. Saito, F. Fujii, M. Matsui, and D. Natsuno, “Frequency of upward lightning from tall structures in winter in Japan,” 2011 7th Asia-Pacific International Conference on Lightning, APL2011, pp. 933–936, 2011.; [21] L. B. L. Santos, R. G. Negri, and T. J. d. C. Editors, Towards Mathematics, Computers and Environment: A Disasters Perspective, 2019.; [22] C. A. Torres Sanabria, O. I. Sánchez, and F. Santamaría, “Comparación de las normas NTC 4552 de 2008 e IEC 62305 de 2010 para el análisis de riesgo,” Revista Tecnura, vol. 18, no. 40, p. 103, 2014.; [23] V. Cooray, I. of Engineering, and Technology, Lightning Protection, ser. Energy Engineering. Institution of Engineering and Technology, 2010. [Online]. Available: https://books.google.com.co/books?id=k44721GxfKYC; [24] V. Mazur and I. of Physics (Great Britain), Principles of Lightning Physics,ser. IOP expanding physics. IOP Publishing, 2016. [Online]. Available: https://books.google.com.co/books?id=Qqh2vgAACAAJ; [25] H. R. Armstrong and E. R. Whitehead, “Field and analytical studies of transmission line shielding,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-87, no. 1, pp. 270–281, 1968.; [26] IEEE Std 1243, “IEEE Guide for improving the lightning performance of transmission lines,” IEEE Std 1243-1997, pp. 1–44, Dec 1997.; [27] G. Carrara and L. Thione, “Switching surge strength of large air gaps: A physical approach,” IEEE Transactions on Power Apparatus and Systems, vol. 95, no. 2, pp. 512– 524, 1976.; [28] N. Petrov and A. Lupeiko, “Determination of the striking distance of lightning to earthed structures,” R. Soc. A, 1995.; [29] ——, “Investigation of spark discharge in long air gaps using pockel’s device,” Proceedings of the 7th International Symposium on High Voltage Engineering ISH, pp. 141–144, 1991.; [30] M. Becerra and V. Cooray, “A simplified physical model to determine the lightning upward connecting leader inception,” IEEE Transactions on Power Delivery, vol. 21, no. 2, pp. 897–908, 2006.; [31] A. Nag and V. A. Rakov, “Lightning discharges producing very strong radiation in both VLF-LF and HF-VHF ranges,” Proceedings - Asia-Pacific Conference on Environmental Electromagnetics, CEEM’2009, pp. 79–84, 2009.; [32] J. A. López, J. Montanyà, O. Van Der Velde, D. Romero, D. Aranguren, H. Torres, J. Taborda, and J. Martinez, “First data of the Colombia lightning mapping array - COLMA,” 2016 33rd International Conference on Lightning Protection, ICLP 2016, 2016.; https://repositorio.unal.edu.co/handle/unal/79621; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/