Showing 1 - 5 results of 5 for search 'Lozano Parada, Jaime Humberto' Narrow Search
1
Academic Journal

File Description: 14 páginas; application/pdf

Relation: 11; 29; 43; Guzmán, J., Lozano-Parada, J.H., Zimmerman, W.B.J. et al. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J Braz. Soc. Mech. Sci. Eng. 43, 29 (2021). https://doi.org/10.1007/s40430-020-02728-1; Journal of the Brazilian Society of Mechanical Sciences and Engineering; 1. Yeaple, F. Fluid power design handbook. CRC Press 1995.; 2. Tomac, M.N.; Gregory, J.W. Internal jet interactions in a fluidic oscillator at low flow rate. Experiments in Fluids 2014, 55, 1730.; 3. Kirshner, J.M. Design theory of fluidic components. Academic Press 2012.; 4. Tesar,̌ V. Taxonomic trees of fluidic oscillators. EPJ Web of Conferences 2017, 143, 02128. DOI:10.1051/epjconf/201714302128.; 5. Warren, R.W. Fluidic oscillator. US patent No. 3016066. Filed in January 1960.; 6. Warren, R.W. Negative feedback oscillator. US patent No. 3158166. Filed in August 1962.; 7. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms– Areview. Trans. Phenom. Nano Micro Scales 2019, 7, pp. 9-27.; 8. Philips, E.; Wygnanski, I. Use of Sweeping Jets During Transient Deployment of a Control Surface. AIAA Journal 2013, 51, pp. 819-828.; 9. Chalandes, C. Fluidic Flow Meter. Patent No: 4976155, Dec. 1, 1990.; 11. Zimmerman, W.B.J.; Zandi, M.; Bandulasena, H.C., Tesař , V.; Gilmour D.J.; Ying K. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Applied Energy 2011, 88, pp. 3357-3369.; 12. Zimmerman, W.B.J.; Hewakandamby, B.N.; Tesař , V.; Bandulasena, H.C.; 391 Omotowa, O. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food and Bioproducts Processing 2009, 87, pp. 215-227.; 13. Tesar,̌ V. High frequency fluidic oscillator. Sensors and Actuators A 2015, 324, pp. 158-167.; 14. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross Flow Water Turbines. J. Renewable and Sustainable Energy 2016, 8, paper 014501.; 15. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Revista Facultad de Ingeniería Universidad de Antioquia, 2010, 51, pp. 24–33.; 16. Riaño J. S.; Guevara M. A.; Belalcazar L. C. CFD modeling and evaluation of bi-stable micro-diverter valve. CT&F – Ciencia, Tecnologia y Futuro 2018, 8, pp. 77 – 84.; 17. Gebhard, U.; Hein, H.; Schmidt, U. Numerical investigation of fluidic micro-oscillators. J. Micromech. Microeng. 1996, 6, pp. 115–117.; 18. Tesar,̌ V.; Bandalusena, H.C.H. Bistable diverter valve in microfluidics. Experiment in Fluids 2011, 50, pp. 1225-1233.; 19. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Experiment in Fluids 2013, 54, 1559.; 20. Krüger, O.; Bobusch, B.C.; Woszidlo, R.; Paschereit, C.O. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In 21st AIAA Computational Fluid Dynamics Conference. June 24-27, 2013, San Diego, CA (USA) 2013.; 21. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016. Paper ICCFD9-2016-256.; 22. Comes, G.; Cravero, C. Theoretical Modeling, Design and Simulation of an Innovative Diverting Valve Based on Coanda Effect. Fluids 2018, 3, 103.; 23. Zimmerman, W.B.J.; Lozano-Parada, J.H. Plasma microreactor apparatus, sterilisation unit and analyser. Patent No.: 8734727, 2014.; 24. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, pp. 2894 – 2906.; 25. Langtry, R.B. A correlation based transition model using local variables for unstructured parallelized CFD codes. PhD Thesis, Univ. Stuttgart, Germany, 2006.; 26. Qian, Z.; Li, W. Analysis of pressure oscillation characteristics in Francis hydraulic turbine with different runner cones. Journal of Hydroelectric Engineering 2012, 31, pp. 278-285+291.; 27. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviour of an impinging jet. International Journal of Computational Fluid Dynamics 2014, 28, pp. 301-315.; 28. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 2018, 11, 297.; 29. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vórtices in the dynamic stall of an oscillating pitching hydrofoil. Ocean Engineering 2016, 127, pp. 200-211.; 30. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. International Journal of Heat and Mass Transfer 2017, 106, pp. 1051-1062.; 31. Contreras, L.T.; López, O.D.; Laín, S. Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine. Energies 2018, 11, 3151.; 32. Tang, Z.; Li, H.; Zhang, F.; Min, X.; Cheng, J. Numerical study of liquid jet impingement flow and heat transfer of a cone heat sink. International Journal of Numerical Methods for Heat and Fluid Flow 2019, 29, pp. 4074-4092.; 33. Rajnath, Y.K.K.; Paul, A.R.; Jain, A. Flow management in a double-offset, transitional twin air-intake at different inflow conditions. Recent Patents on Mechanical Engineering 2019, 12, pp. 168-179; 34. Laín, S.; Cortés, P.; López, O.D. Numerical simulation of the flow around 443 a straight blade Darrieus water turbine. Energies 2020, 13, 1137.; 35. Smirnov, P.E.; Menter, F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. Journal of Turbomachinery 2009, 131, 041010.; https://hdl.handle.net/10614/13928; Universidad Autónoma de Occidente; Repositorio Educativo Digital; https://red.uao.edu.co/

2
Academic Journal

Superior Title: reponame:Repositorio Institucional UAO

Time: Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí

File Description: application/pdf; 9 páginas

Relation: 616; 608; 56; Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616; Journal of Nuclear Science and Technology; [1] Shimazu Y, Nakano Y, Tahara Y, Okayama T. Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol. 1987;77:247–254.; [2] Ansari SA. Development of on-line reactivity meter for nuclear reactors. IEEE Trans Nucl Sci. 1991;38:946–952.; [3] Binney SE, Bakir AIM. Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl Technol. 1989;85:12–21.; [4] Hoogenboom JE, Van Der Sluijs AR. Neutron source strength determination for on-line reactivity measurements. Ann Nucl Energy. 1988;15:553–559.; [5] Tamura S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J Nucl SciTechnol. 2003;40:153–157.; [6] Suescún DD, Senra AM, Carvalho Da Silva F. Calculation of reactivity using a finite impulse response filter. Ann Nucl Energy. 2008;35:472–477.; [7] Suescún DD, Senra AM. Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik. 2010;75:210–213.; [8] Malmir H, Vosoughi N. On-line reactivity calculation using Lagrange method. Ann Nucl Energy. 2013;62:463–467.; [9] Suescún DD, Bonilla HFL, Figueroa JJH. Savitzky-Golay filter for reactivity calculation. J Nucl Sci Technol. 2016;53:944–950.; [10] Suescún DD, Rasero CDA, Figueroa JJH. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations. Kerntechnik. 2017;82:674–677.; [11] Duderstadt JJ, Hamilton LJ. Nuclear reactor analysis. New York (NY): Wiley; 1976.; [12] Palma DAP, Martinez AS, Gonçalves AC. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor. Ann Nucl Energy. 2009;36:1469–1471.; [13] Haykin S, Veen BV. Signal and system. New York (NY): Wiley; 1999.; [14] Diniz RPS, Da Silva BEA, Netto LS. Digital signal processing: system analysis and design. Cambridge: Cambridge University Press; 2010.; [15] Kitano A, Itagaki M, Narita M. Memorial-indexbased inverse kinetics method for continuous measurement of reactivity and source strength. J Nucl Sci Technol. 2000;37:53–59.; http://hdl.handle.net/10614/11570; https://doi.org/10.1080/00223131.2019.1611502

3
Academic Journal

Superior Title: (1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,
77:247–254
Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi:10.1109/23.83857
Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi:10.13182/NT89-A34223
Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi:10.1016/0306-4549(88)90059-X
Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi:10.1080/18811248.2003.9715345
Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi:10.1016/j.anucene.2007.07.002
Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times
Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi:10.1016/j.anucene.2013.07.006
Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi:10.1080/00223131.2015.1082949

Time: Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí

File Description: application/pdf; Páginas 608-616

Relation: Journal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019); (1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254; Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi:10.1109/23.83857; Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi:10.13182/NT89-A34223; Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi:10.1016/0306-4549(88)90059-X; Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi:10.1080/18811248.2003.9715345; Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi:10.1016/j.anucene.2007.07.002; Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times; Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi:10.1016/j.anucene.2013.07.006; Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi:10.1080/00223131.2015.1082949; Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley; Palma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi:10.1016/j.anucene.2009.06.016; Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley; Diniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press; Kitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi:10.1080/18811248.2000.9714866; Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616; 1881-1248 (en línea); 0022-3131 (impresa); http://hdl.handle.net/10614/11498; https://doi.org/10.1080/00223131.2019.1611502

4
Academic Journal

File Description: 21 páginas; application/pdf

Relation: Volumen 24, número 3 (2019); 563; 543; 24; Suescún Díaz, D., Rasero Causil, D.A., Lozano Parada, J.H. (2019). Neutron Density Calculation Using the Generalised Adams-Bashforth-Moulton Method. Universitas Scientiarum. Pontificia Universidad Javeriana. (Vol. 24 (3), pp. 543-563, 2019. doi:10.11144/Javeriana.SC24-3.ndcu; Universitas Scientiarum; [1] Chao YA, Attard A. A resolution of the stiffness problem of reactor kinetics, Nuclear Science and Engineering, 90(1):40-46, 1985. doi:10.13182/NSE85-A17429; [2] Sánchez J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods, Nuclear Science and Engineering, 103: 94-99, 1989. doi:10.13182/NSE89-A23663; [3] Aboanber AE, Nahla AA. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximation via the analytical inversion method, Journal of Physics A: Mathematical and General, 35(45):9609-9627, 2002b. doi:10.1088/0305-4470/35/45/309; [4] Aboanber AE, Nahla AA. Generalization of the analytical inverse method for the solution of point kinetics equations, Journal of Physics A: Mathematical and General, 35(14): 3245-3263, 2002a. doi:10.1088/0305-4470/35/14/307; [5] Aboanber AE. Analytical solution of the point kinetics equations by exponential mode analysis, Progress in Nuclear Energy, 42(2): 179-197, 2003. doi:10.1016/s0140-6701(03)82201-4; [6] Kinard, M.; Allen, E. J.: Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics, Annals of Nuclear Energy, 31(9): 1039-1051, 2004. doi:10.1016/j.anucene.2003.12.008; [7] Quintero LB. CORE: a numerical algorithm to solve the point kinetics equations, Annals of Nuclear Energy, 35(11): 2136-2138, 2008. doi:10.1016/j.anucene.2008.07.002; [8] Li H, Chen W, Luo L, Zhu Q. A new integral method for solving the point reactor neutron kinetics equations, Annals of Nuclear Energy, 36(4): 427-432, 2009. doi:10.1016/j.anucene.2008.11.033; [9] Nahla, A. A.: Taylor series method for solving the nonlinear point kinetics equations, Nuclear Engineering and Design, 241(5): 1592-1595, 2011. doi:10.1016/j.nucengdes.2011.02.016; [10] Hamada, Y. M.: Generalized power series method with step size control for neutron kinetics equations, Nuclear Engineering and Design, 241(8): 3032-3041, 2011. doi:10.1016/j.nucengdes.2011.05.006; [11] Hamada YM. Confirmation of accuracy of generalized power series method for the solution of point kinetics equations with feedback, Annals of Nuclear Energy, 55: 184-193, 2013. doi:10.1016/j.anucene.2012.12.013; [12] Ganapol BD. A highly accurate algorithm for the solution of the point kinetics equations, Annals of Nuclear Energy, 62: 564- 571, 2013. doi:10.1016/j.anucene.2012.06.007; [13] Picca P, Furfaro R, Ganapol B. A highly accurate technique for the solution of the non-linear point kinetics equations, Annals of Nuclear Energy, 58: 43-53, 2013. doi:10.1016/j.anucene.2013.03.004; [14] Salah A. Hassan SA. Samia.: The Analytical Algorithm for the Differential Transform Method to Solution of the Reactor Point kinetics Equations, World Applied Sciences Journal, 27(3):367-370, 2013. doi:10.5829/idosi.wasj.2013.27.03.1601; [15] Kim HT, Park Y, Kazantzis N, Parlos A, Vista IV F, Chong KT. A numerical solution to the point kinetic equations using Taylor-Lie series combined with a scaling and squaring technique, Nuclear Engineering and Design, 272: 1-10, 2014. doi:10.1016/j.nucengdes.2013.12.066; [16] Patra A, Ray SS. A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Annals of Nuclear Energy, 68: 112-117, 2014. doi:10.1016/j.anucene.2014.01.008; [17] Leite QB, Palma AP, Vilhena MT, Bodmann EJ. Analytical representation of the solution of the point reactor kinetics equations with adaptive time step, Progress in Nuclear Energy, 70: 112-118, 2014. doi:10.1016/j.pnucene.2013.07.008; [18] Hamada YM. Trigonometric Fourier-series solutions of the point reactor kinetics equations. Nuclear Engineering and Design, 281: 142-153, 2015. doi:10.1016/j.nucengdes.2014.11.017; [19] Razak MA, Devan K, Sathiyasheela T. The modified exponential time differencing (ETD) method for solving the reactor point kinetics equations, Annals of Nuclear Energy, 76: 193-199, 2015. doi:10.1016/j.anucene.2014.09.020; [20] Nahla AA. Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors, Progress in Nuclear Energy, 85: 756-763, 2015. doi:10.1016/j.pnucene.2015.09.008; [21] Suescún DD, Narváez PM, Lozano PH. Calculation of Nuclear Reactivity Using the Generalised Adams Bashforth-Moulton Predictor-Corrector Method, Kerntechnik, 81(1): 86-93, 2016. doi:10.3139/124.110591; [22] Yun C, Xingjie P, Qing L, Kan W. A numerical solution to the nonlinear point kinetics equations using Magnus expansion, Annals of Nuclear Energy, 89: 84-89, 2016. doi:10.1016/j.anucene.2015.11.021; [23] Duderstadt JJ, Hamilton LJ. Nuclear Reactor Analysis, second ed. John Wiley & Sons Inc., New York, 1976; 1227483; https://hdl.handle.net/10614/13432

5
Academic Journal

Alternate Title: Efficient ozone production in an atmospheric pressure air microplasma.

Superior Title: Ciencia en Desarrollo. ene-jun2017, Vol. 8 Issue 1, p169-178. 10p.