Showing 1 - 20 results of 289 for search 'разрывы' Narrow Search
3
Academic Journal

Superior Title: Acta Biomedica Scientifica; Том 8, № 5 (2023); 203-210 ; 2587-9596 ; 2541-9420

File Description: application/pdf

Relation: https://www.actabiomedica.ru/jour/article/view/4459/2669; Ito H, Kawakami T. Acromiohumeral distance changes with posture in healthy adults and patients while wearing a shoulder abduction brace. J Phys Ther Sci. 2023; 35(8): 598-601. doi:10.1589/jpts.35.598; Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. Neer award: Effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg. 2014; 23: 445-455. doi:10.1016/j.jse.2013.07.054; Shah NS, Suriel Peguero E, Umeda Y, Crawford ZT, Grawe BM. Long-term. outcomes of massive rotator cuff tear repair: Asystematic review. HSSJ. 2022; 18(1): 130-137. doi:10.1177/15563316211008137; Rondon AJ, Farronato DM, Pezzulo JD, Abboud JA. Irreparable massive rotator cuff tears: Subacromial balloon surgical technique. Arthrosc Tech. 2022; 12(3): e421-e432. doi:10.1016/j.eats.2022.08.048; Shah NS, Suriel Peguero E, Umeda Y, Crawford ZT, Grawe BM. Long-term outcomes of massive rotator cuff tear repair: A systematic review. HSS Journal. 2022; 18(1): 130-137. doi:10.1177/15563316211008137; Sheth MM, Shah AA. Massive and irreparable rotator cuff tears: A review of current definitions and concepts. Orthop J Sports Med. 2023; 11(5): 23259671231154452. doi:10.1177/23259671231154452; Coward JC, Bauer S, Babic SM, Coron C, Okamoto T, BlakeneyWG. Understanding shoulder pseudoparalysis. PartII: Treatment. EFORT Open Rev. 2022; 7(3): 227-239. doi:10.1530/EOR-21-0070; Di Benedetto P, Mancuso F, Tosolini L, Buttironi MM, Beltrame A, Causero A. Treatment options for massive rotator cuff tears: a narrative review. Acta Biomed. 2021; 92(S3): e2021026. doi:10.23750/abm.v92iS3.11766; Greenspoon JA, Petri M, Warth RJ, Millett PJ. Massive rotator cuff tears: Pathomechanics, current treatment options, and clinical outcomes. J Shoulder Elbow Surg. 2015; 24(9): 1493-1505. doi:10.1016/j.jse.2015.04.005; Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004; 86: 219-224.; Burkhart SS, Nottage WM, Ogilvie-Harris DJ, Kohn HS, Pachelli A. Partial repair of irreparable rotator cuff tears. Arthroscopy. 1994; 10(04): 363-370.; Carver TJ, Kraeutler MJ, Smith JR, Bravman JT, McCarty EC. Nonarthroplasty surgical treatment options for massive, irreparable rotator cuff tears. Orthop J Sports Med. 2018; 6(11): 2325967118805385. doi:10.1177/2325967118805385; Malahias M-A, Kostretzis L, Chronopoulos E, Brilakis E, Avramidis G, Antonogiannakis E. Arthroscopic partial repair for massive rotator cuff tears: does it work? A systematic review. Sports Med Open. 2019; 5: 13. doi:10.1186/s40798-019-0186-z; Kucirek NK, Hung NJ, Wong SE. Treatment options for massive irreparable rotator cuff tears. Curr Rev Musculoskelet Med. 2021; 14(5): 304-315. doi:10.1007/s12178-021-09714-7; Galasso O, Riccelli DA, De Gori M, De Benedetto M, Orlando N, Gasparini G, et al. Quality of life and functional results of arthroscopic partial repair of irreparable rotator cuff tears. Arthroscopy. 2017; 33(2): 261-268.; Hallock JD, Parsell DE, Field LD. Partial rotator cuff repair for massive tears rarely require revision surgery. ASMAR. 2020; 3: e121-e126. doi:10.1016/j.asmr.2020.08.017; Shon MS, Koh KH, Lim TK, Kim WJ, Kim KC, Yoo JC. Arthroscopic partial repair of irreparable rotator cuff tears: preoperative factors associated with outcome deterioration over 2years. AmJ Sports Med. 2015; 43: 1965-1975. doi:10.1177/0363546515585122; Kim SJ, Lee IS, Kim SH, Lee WY, Chun YM. Arthroscopic partial repair of irreparable large to massive rotator cuff tears. Arthroscopy. 2012; 28(6): 761-768.; Iagulli ND, Field LD, Hobgood ER, Ramsey JR, Savoie FH3rd. Comparison of partial versus complete arthroscopic repair of massive rotator cuff tears. Am J Sports Med. 2012; 40(5): 1022-1026. doi:10.1177/0363546512438763; Iannotti JP, Deutsch A, Green A, Rudicel S, Christensen J, Marraffino S, et al. Time to failure after rotator cuff repair: A prospective imaging study. J Bone Joint Surg Am. 2013; 95: 965-971. doi:10.2106/JBJS.L.00708; Jeong JY, Kim SJ, Yoon TH, Eum KS, Chun YM. Arthroscopic repair of large and massive rotator cuff tears: Complete repair with aggressive release compared with partial repair alone at a minimum follow-up of 5 years. JBJS. 2020; 102: 1248-1254. doi:10.2106/JBJS.19.01014; Savarese E, Romeo R. New solution for massive, irreparable rotator cuff tears: The subacromial “biodegradable spacer.” Arthrosc Tech. 2012; 1(1): e69-e74.; Senekovic V, Poberaj B, Kovacic L, Mikek M, Adar E, Markovitz E, et al. The biodegradable spacer as a novel treatment modality for massive rotator cuff tears: A prospective study with 5-year follow-up. Arch Orthop Trauma Surg. 2017; 137(1): 95-103. doi:10.1007/s00402-016-2603-9; Gervasi E, Cautero E, Dekel A. Fluoroscopy-guided implantation of subacromial “biodegradable spacer” using local anesthesia in patients with irreparable rotator cuff tear. Arthrosc Tech. 2014; 3(4): e455-e458. doi:10.1016/j.eats.2014.05.010; Holschen M, Brand F, Agneskirchner JD. Subacromial spacer implantation for massive rotator cuff tears: Clinical outcome of arthroscopically treated patients. Obere Extrem. 2017; 12(1): 38-45. doi:10.1007/s11678-016-0386-9; Deranlot J, Herisson O, Nourissat G, Zbili D, Werthel JD, Vigan M, et al. Arthroscopic subacromial spacer implantation in patients with massive irreparable rotator cuff tears: Clinical and radiographic results of 39 retrospective cases. Arthroscopy. 2017; 33(9): 1639-1644. doi:10.1016/j.arthro.2017.03.029; Malahias MA, Brilakis E, Avramidis G, Trellopoulos A, Antonogiannakis E. Arthroscopic partial repair with versus without biodegradable subacromial spacer for patients with massive rotator cuff tears: A case-control study. Musculoskelet Surg 2021; 105(3): 247-255. doi:10.1007/s12306-020-00649-9; Metcalf MH, Savoie FH III, Kellum B. Surgical technique for xenograft (SIS) augmentation of rotator-cuff repairs. Oper Tech Orthop 2002; 12: 204-208.; Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008; 17: 35S-39S. doi:10.1016/j.jse.2007.08.005; Burkhead WZ Jr, Schiffern SC, Krishnan SG. Use of GraftJacket as an augmentation for massive rotator cuff tears. Semin Arthroplasty. 2007; 18: 11-18.; Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: Technique and preliminary results. Arthroscopy 2008; 24: 403-409.e1. doi:10.1016/j.arthro.2007.07.033; Gupta AK, Hug K, Berkoff DJ, Boggess BR, Gavigan M, Malley PC, et al. Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. Am J Sports Med. 2012; 40(1): 141-147. doi:10.1177/0363546511422795; Denard PJ, Brady PC, Adams CR, Tokish JM, Burkhart SS. Preliminary results of arthroscopic superior capsule reconstruction with dermal allograft. Arthroscopy. 2018; 34(1): 93-99. doi:10.1016/j.arthro.2017.08.265; Lee SJ, Min YK. Can inadequate acromiohumeral distance improvement and poor posterior remnant tissue be the predictive factors of re-tear? Preliminary outcomes of arthroscopic superior capsular reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018; 26(7): 2205-2213. doi:10.1007/s00167-018-4912-8; Mihata T, Lee TQ, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, et al. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy. 2013; 29(3): 459-470. doi:10.1016/j.arthro.2012.10.022; Mihata T. Editorial commentary: Superior capsule reconstruction: Graft healing for success. Arthroscopy. 2018; 34(1): 100-101. doi:10.1016/j.arthro.2017.09.048; Jordan RW, Sharma N, Daggett M, Saithna A. The role of superior capsule reconstruction in the irreparable rotator cuff tear – Asystematic review. Orthop Traumatol Surg Res. 2019; 105(8): 1535-1542. doi:10.1016/j.otsr.2019.07.022; Kim YS, Lee HJ, Park I, Sung GY, Kim DJ, Kim JH. Arthroscopic in situ superior capsular reconstruction using the long head of the biceps tendon. Arthrosc Tech. 2018; 7(2): e97-103. doi:10.1016/j.eats.2017.08.058; Parvizi J, Huddleston JI. Instructional course lectures. Rosemont (IL): American Academy of Orthopaedic Surgeons; 2018: 129-142.; Чирков Н.Н. Способ лечения разрыва вращательной манжеты плечевого сустава: Патент № 2715506 Рос. Федерация; МПК A61B 17/00. № 2019112789; заявл. 25.04.2019; опубл. 28.02.2020.; Чирков Н.Н., Яковлев В.Н., Алексеева А.В. Андронников Е.В., Емельянов В.Ю. Хирургическое лечение невосстановимых массивных повреждений вращательной манжеты плечевого сустава. Гений ортопедии. 2022; 28(1): 12-17. doi:10.18019/1028-4427-2022-28-1-12-17; Gerber C, Vinh T, Hertel R, Hess C. Latissimus dorsi transfer for the treatment of massive tears of the rotator cuff: A preliminary report. Clin Orthop Relat Res. 1988; 232: 51-61.; Namdari S, Voleti P, Baldwin K, Glaser D, Huffman GR. Latissimus dorsi tendon transfer for irreparable rotator cuff tears: A systematic review. J Bone Joint Surg Am. 2012; 94(10): 891-898. doi:10.2106/JBJS.K.00841; Доколин С.Ю., Кузьмина В.И., Марченко И.В., Курбанов И.Ш. Артроскопически-ассистированный трансфер сухожилия широчайшей мышцы спины в положении lateral decubitus – вариант безопасной и воспроизводимой хирургической техники. Кафедра травматологии и ортопедии. 2020; 1(39): 50-58. doi:10.17238/issn2226-2016.2020.1.50-58; Werner C, Zingg PO, Lie D, Jacob H, Gerber C. The biomechanical role of the subscapularis in latissimus dorsi transfer for the treatment of irreparable rotator cuff tears. J Shoulder Elbow Surg. 2006; 15(6): 736-742. doi:10.1016/j.jse.2005.11.002; Gerber C, Maquieira G, Espinosa N. Latissimus dorsi transfer for the treatment of irreparable rotator cuff tears J Bone Joint Surg Am. 2006; 88(1): 113-120. doi:10.2106/JBJS.E.00282; Gervasi E, Maman E, Dekel A, Cautero E. Fluoroscopy-guided biodegradable spacer implantation using local anesthesia: Safety and efficacy study in patients with massive rotator cuff tears. Musculoskelet Surg. 2016; 100: 19-24. doi:10.1007/s12306-016-0433-0; Доколин С.Ю., Найда Д.А., Кочиш А.Ю., Кузьмина В.И., Марченко И.В. Способ хирургического лечения массивных невосстановимых разрывов вращательной манжеты плечевого сустава с использованием артроскопически ассистированной техники транспозиции широчайшей мышцы спины: Пат. № 2729020 Рос. Федерация. № 2020102444; заявл. 21.01.2020; опубл. 03.08.2020. Бюл. № 22.; Загородний Н.В., Беляк Е.А., Лазко Ф.Л. Кубашев А.А. Призов А.П., Эпштейн А.А., и др. Двойная транспозиция как метод лечения пациентов с массивным невосстанавливаемым разрывом вращательной манжеты плеча. Opinion Leader. 2019; 5(23): 42-45.; Ek ET, Neukom L, Catanzaro S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65years old: Results after five tofifteen years. JShoulder Elbow Surg. 2013; 22(9): 1199-1208. doi:10.1016/j.jse.2012.11.016; Доколин С.Ю. Хирургическое лечение пациентов с артропатией плечевого сустава вследствие массивных разрывов вращательной манжеты: автореф. дис. … докт. мед. наук. 2020.; https://www.actabiomedica.ru/jour/article/view/4459

4
Academic Journal

Superior Title: Acta Biomedica Scientifica; Том 8, № 5 (2023); 133-143 ; 2587-9596 ; 2541-9420

File Description: application/pdf

Relation: https://www.actabiomedica.ru/jour/article/view/4451/2661; Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elb Surg. 2010; 19: 116-120. doi:10.1016/j.jse.2009.04.006; Kucirek NK, Hung NJ, Wong SE. Treatment options for massive irreparable rotator cuff tears. Curr Rev Musculoskelet Med. 2021; 14(5): 304-315. doi:10.1007/s12178-021-09714-7; Di Benedetto P, Mancuso F, Tosolini L, Buttironi MM, Beltrame A, Causero A. Treatment options for massive rotator cuff tears: A narrative review. Acta Biomed. 2021; 92(S3): e2021026. doi:10.23750/abm.v92iS3.11766; Dunn WR, Kuhn JE, Sanders R, An Q, Baumgarten KM, Bishop JY, et al. Symptoms of pain do not correlate with rotator cuff tear severity. J Bone Joint Surg Am. 2014; 96: 793-800. doi:10.2106/JBJS.L.01304; Доколин С.Ю., Кузьмина В.И., Найда Д.А. Хирургическая коррекция вертикальной нестабильности головки плечевой кости у пациентов с артропатией на фоне массивных разрывов вращательной манжеты плечевого сустава.Opinion Leader. 2018; 4(12): 66-72.; Denard PJ, Brady PC, Adams CR, Tokish JM, Burkhart SS. Preliminary results of arthroscopic superior capsule reconstruction with dermal allograft. Arthroscopy. 2018; 34(1): 93-99. doi:10.1016/j.arthro.2017.08.265; Lee SJ, Min YK. Can inadequate acromiohumeral distance improvement and poor posterior remnant tissue be the predictive factors of re-tear? Preliminary 272 outcomes of arthroscopic superior capsular reconstruction. Knee Surg Sport Traumatol Arthrosc. 2018; 26(7): 2205-2213.; Jordan RW, Sharma N, Daggett M, Saithna A. The role of superior capsule reconstruction in the irreparable rotator cuff tear – A systematic review. Orthop Traumatol Surg Res. 2019; 105(8): 1535-1542. doi:10.1016/j.otsr.2019.07.022; Меньшова Д.В., Пономаренко Н.С., Куклин И.А., Монастырев В.В., Пусева М.Э., Бальжинимаев Д.Б. Способ лечения массивных разрывов сухожилий вращательной манжеты плеча: Патент № 2779219 Рос. Федерация; МПК A61B 17/56; заявитель Федеральное государственное бюджетное научное учреждение «Иркутский научный центр хирургии и травматологии». № 2021116956; заявл. 09.06.2021; опубл. 05.09.2022.; Gervasi E, Cautero E, Dekel A. Fluoroscopy-guided implantation of subacromial “biodegradable spacer” using local anesthesia in patients with irreparable rotator cuff tear. Rthrosc Tech. 2014; 3(4): e455-e458. doi:10.1016/j.eats.2014.05.010; Savarese E, Romeo R. New solution for massive, irreparable rotator cuff tears: The subacromial “biodegradable spacer”. Arthrosc Tech. 2012; 1(1): e69-e74. doi:10.1016/j.eats.2012.02.002; Gerber C, Vinh TS, Hertel R, Hess CW. Latissimus dorsi transfer for the treatment of massive tears of the rotator cuff. A preliminary report. Clin Orthop Relat Res. 1988; (232): 51-61.; Shea KP, Obopilwe E, Sperling JW, Iannotti JP. A biomechanical analysis of gap formation and failure mechanics of a xenograftreinforced rotator cuff repair in a cadaveric model. J Shoulder Elbow Surg. 2012; 21: 1072-1079. doi:10.1016/j.jse.2011.07.024; Memon M, Kay J, Quick E, Simunovic N, Duong A, Henry P, et al. Arthroscopic-assisted latissimus dorsi tendon transfer for massive rotator cuff tears: A systematic review. Orthop J Sports Med. 2018; 6(6): 2325967118777735. doi:10.1177/2325967118777735; Miyazaki AN, Checchia CS, de Castro Lopes W, Fonseca Filho JM, Sella GDV, da Silva LA. Latissimus dorsi tendon transfer using tendinous allograft for irreparable rotator cuff lesions: surgical technique. Rev Bras Ortop (Sao Paulo). 2019; 54(1): 99-103. doi:10.1055/s-0038-1676989; Ek ET, Neukom L, Catanzaro S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: Results after five to fifteen years. J Shoulder Elbow Surg. 2013; 22(9): 1199-1208. doi:10.1016/j.jse.2012.11.016; Van der Zwaal P, Thomassen BJ, Nieuwenhuijse MJ, Lindenburg R, Swen JW, van Arkel ER. Clinical outcome in allarthroscopic versus mini-open rotator cuff repair in small to medium-sized tears: A randomized controlled trial in 100 patients with 1-year follow-up. Arthroscopy. 2013; 29(2): 266-273. doi:10.1016/j.arthro.2012.08.022; https://www.actabiomedica.ru/jour/article/view/4451

5
Academic Journal

Superior Title: Acta Biomedica Scientifica; Том 8, № 5 (2023); 150-156 ; 2587-9596 ; 2541-9420

File Description: application/pdf

Relation: https://www.actabiomedica.ru/jour/article/view/4453/2663; Mitchell C, Adebajo A, Hay E, Carr A. Shoulder pain: Diagnosis and management in primary care. BMJ. 2005; 331(7525): 1124-1128. doi:10.1136/bmj.331.7525.1124; Burkhart SS, Pranckun JJ, Hartzler RU. Superior capsular reconstruction for the operatively irreparable rotator cuff tear: Clinical outcomes are maintained 2 years after surgery. Arthroscopy. 2020; 36(2): 373-380. doi:10.1016/j.arthro.2019.08.035; Fehringer EV, Sun J, Van Oeveren LS, Keller BK, Matsen FA 3rd. Full-thickness rotator cuff tear prevalence and correlation with function and co-morbidities in patients sixty-five years and older. J Shoulder Elbow Surg. 2008; 17(6): 881-885. doi:10.1016/j.jse.2008.05.039; Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elbow Surg. 1999; 8(4): 296-299. doi:10.1016/s1058-2746(99)90148-9; Меньшова Д.В., Пономаренко Н.С., Куклин И.А. Хирургическое лечение пациентов с массивными разрывами вращательной манжеты плеча (обзор литературы). Россия и Монголия: Результаты и перспективы научного сотрудничества. Труды Международной научной конференции. Иркутск; 2022: 341-343. doi:10.53954/9785604859506; Brolin TJ, Updegrove G, Horneff J. Classification in brief: Hamada classification of massive rotator cuff tear. Clin Orthop Relat Res 2017; 475(11): 2819-2823. doi:10.1007/s11999-017-5340-7; Patte D, Didier MD. Classification of rotator cuff lesions. Clin Orthop Relat Res. 1990; 254: 81-86.; Somerson J, Hsu J, Gorbaty J, Gee A. Classification in brief: Goutallier classification of fatty infiltration of the rotator cuff musculature. Clin Orthop Relat Res. 2016; 474(5): 1328-1332. doi:10.1007/s11999-015-4630-1; Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F. Atrophy of the supraspinatus belly. Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996; 67: 264-268.; Самарцев И.Н., Живолупов С.А., Емелин А.Ю., Рашидов Н.А., Бардаков С.Н. Современные представления о дифференциальной диагностике и лечении пациентов с болью в области плеча. Русский медицинский журнал. 2017; 9: 564-571.; Королев А.В., Ильин Д.О. Клиническое обследование плечевого сустава. М.: ГЭОТАР-Медиа; 2018.; Гажонова В.Е., Емельяненко М.В., Онищенко М.П. Гибридная технология фьюжн/УЗИ и эластография в диагностике атрофии и жировой дегенерации надостной мышцы плечевого сустава. Медицинская визуализация. 2017; 21(5): 112-123. doi:10.24835/1607-0763-2017-5-112-123; Smith TO, Back T, Toms AP, Hing CB. Diagnostic accuracy of ultrasound for rotator cuff tears in adults: A systematic review and meta-analysis. Clin Radiol. 2011; 66(11): 1036-1048. doi:10.1016/j.crad.2011.05.007; Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg Am. 2015; 40(2): 399-408. doi:10.1016/j.jhsa.2014.06.122; Zingg PO, Jost B, Sukthankar A, Buhler M, Pfirrmann CW, Gerber C. Clinical and structural outcomes of nonoperative management of massive rotator cuff tears. J Bone Joint Surg Am. 2007; 89(9): 1928-1934. doi:10.2106/JBJS.F.01073; Wei AS, Callaci JJ, Juknelis D, Marra G, Tonino P, Freedman KB, et al. The effect of corticosteroid on collagen expression in injured rotator cuff tendon. J Bone Joint Surg Am. 2006; 88(6): 1331-1338. doi:10.2106/JBJS.E.00806; Shibata Y, Midorikawa K, Emoto G, Naito M. Clinical evaluation of sodium hyaluronate for the treatment of patients with rotator cuff tear. J Shoulder Elbow Surg. 2001; 10(3): 209-216. doi:10.1067/mse.2001.113501; Quinlan NJ, Frandsen JJ, Smith KM, Lu CC, Chalmers PN, Tashjian RZ. Conservatively treated symptomatic rotator cuff tendinopathy may progress to a tear. Arthrosc Sports Med Rehabil. 2022; 4(4): e1449-e1455. doi:10.1016/j.asmr.2022.05.004; Макаревич Е.Р., Белецкий А.В. Лечение повреждений вращательной манжеты плеча. Минск: БГУ; 2001.; Zhao J, Luo M, Pan J, Liang G, Feng W, Zeng L, et al. Risk factors affecting rotator cuff retear after arthroscopic repair: A meta-analysis and systematic review. J Shoulder Elbow Surg. 2021; 30(11): 2660-2670. doi:10.1016/j.jse.2021.05.010; Yoo JC, Koh KH, Woo KJ, Shon MS, Koo KH. Clinical and radiographic results of partial repairs in irreparable rotator cuff tears: Preliminary report. Arthroscopy. 2010; 26(6): e3. doi:10.1016/j.arthro.2010.04.015; Green A, Loyd K, Molino J, Evangelista P, Gallacher S, Adkins J. Long-term functional and structural outcome of rotator cuff repair in patients 60 years old or less. JSES Int. 2022; 7(1): 58-66. doi:10.1016/j.jseint.2022.10.002; Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: Technique and preliminary results. Arthroscopy. 2008; 24(4): 403-409. doi:10.1016/j.arthro.2007.07.033; Ravenscroft MJ, Riley JA, Morgan BW, Sandher DS, Odak SS, Joseph P. Histological incorporation of acellular dermal matrix in the failed superior capsule reconstruction of the shoulder. J Exp Orthop. 2019; 6(1): 21. doi:10.1186/s40634-019-0189-1; Hirahara AM, Adams CR. Arthroscopic superior capsular reconstruction for treatment of massive irreparable rotator cuff tears. Arthrosc Tech. 2015; 4(6): e637-e641. doi:10.1016/j.eats.2015.07.006; Mihata T, Lee TQ, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, et al. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy. 2013; 29(3): 459-470. doi:10.1016/j.arthro.2012.10.022; Mihata T. Editorial commentary: Superior capsule reconstruction: Graft healing for success. Arthroscopy. 2018; 34(1): 100-101. doi:10.1016/j.arthro.2017.09.048; Gerber C, Vinh TS, Hertel R, Hess CW. Latissimus dorsi transfer for the treatment of massive tears of the rotator cuff. A preliminary report. Clin Orthop Relat Res. 1988; (232): 51-61.; Gervasi E, Causero A, Parodi PC, Raimondo D, Tancredi G. Arthroscopic latissimus dorsi transfer. Arthroscopy. 2007; 23: 1243. e1–1243.e4. doi:10.1016/j.arthro.2006.12.021; Петросян А.С., Егиазарян К.А., Панин М.А., Ратьев А.П., Аль Баварид О.А. Эволюция эндопротезирования плечевого сустава. Вестник Российского университета дружбы народов. Серия: Медицина. 2022; 26(2): 117-128. doi:10.22363/2313-0245-2022-26-2-117-128; Ek ET, Neukom L, Catanzaro S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: Results after five to fifteen years. J Shoulder Elbow Surg. 2013; 22(9): 1199-1208. doi:10.1016/j.jse.2012.11.016; Petrillo S, Longo UG, Papalia R, Denaro V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: A systematic review. Musculoskelet Surg. 2017; 101(2): 105-112. doi:10.1007/s12306-017-0474-z; Singh Jagdev B, McGrath J, Cole A, Gomaa AR, Chong HH, Singh HP. Total shoulder arthroplasty vs. hemiarthroplasty in patients with primary glenohumeral arthritis with intact rotator cuff: Meta-analysis using the ratio of means. J Shoulder Elbow Surg. 2022; 31(12): 2657-2670. doi:10.1016/j.jse.2022.07.012; Rondon A, Farronato M, Pezzulo J, Abboud J. Irreparable massive rotator cuff tears: Subacromial balloon surgical technique. Arthrosc Tech. 2023; 12(3): e421-e432. doi:10.1016/j.eats.2022.08.048; Shaoshen Zhu, Jianfeng Hou, Chang Liu, Peng Liu, Ting Guo, Zhengjie Lin, et al. An engineered tenogenic patch for the treatment of rotator cuff tear Materials Design. 2022; 224(111402). doi:10.1016/j.matdes.2022.111402; https://www.actabiomedica.ru/jour/article/view/4453

Availability: https://doi.org/10.29413/ABS.2023-8.5.1610.1136/bmj.331.7525.112410.1016/j.arthro.2019.08.03510.1016/j.jse.2008.05.03910.1016/s1058-2746(99)90148-910.53954/978560485950610.1007/s11999-017-5340-710.1007/s11999-015-4630-110.24835/1607-0763-2017-5-112-12310.1016/j.crad.2011.05.00710.1016/j.jhsa.2014.06.12210.2106/JBJS.F.0107310.2106/JBJS.E.0080610.1067/mse.2001.11350110.1016/j.asmr.2022.05.00410.1016/j.jse.2021.05.01010.1016/j.arthro.2010.04.01510.1016/j.jseint.2022.10.00210.1016/j.arthro.2007.07.03310.1186/s40634-019-0189-110.1016/j.eats.2015.07.00610.1016/j.arthro.2012.10.02210.1016/j.arthro.2017.09.04810.1016/j.arthro.2006.12.02110.22363/2313-0245-2022-26-2-117-12810.1016/j.jse.2012.11.01610.1007/s12306-017-0474-z10.1016/j.jse.2022.07.01210.1016/j.eats.2022.08.04810.1016/j.matdes.2022.111402
https://www.actabiomedica.ru/jour/article/view/4453

6
Academic Journal

Superior Title: Сборник статей

File Description: application/pdf

Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Анализ причин родовых травм промежности / М. Н. Ермолина, М. А. Романов, М. А. Ячменева, М. В. Коваль. – Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 58-63.; http://elib.usma.ru/handle/usma/13243

7
Academic Journal

Superior Title: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

File Description: application/pdf

Relation: info:eu-repo/grantAgreement/RSF//20-79-10142; Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2023. Т. 334, № 3; Прогнозное моделирование гидравлического разрыва пласта алюмосиликатными пропантами, изготовленными на основе буровых шламов / А. А. Третьяк, Е. А. Яценко, С. В. Доронин [и др.] // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2023. — Т. 334, № 3. — [С. 165-172].; http://earchive.tpu.ru/handle/11683/74965

8
Academic Journal

Superior Title: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

File Description: application/pdf

Relation: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2023. Т. 334, № 2; Галкин, В. И. Обоснование прогнозной величины прироста дебита нефти после применения ГТМ с помощью статистического метода / В. И. Галкин, А. Н. Колтырин // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2023. — Т. 334, № 2. — [С. 81-86].; http://earchive.tpu.ru/handle/11683/74838

9
Academic Journal

Superior Title: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

File Description: application/pdf

Relation: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2023. Т. 334, № 2; Магадова, Л. А. Обзор и анализ технологий, повышающих эффективность нефтеизвлечения из пластов баженовской свиты / Л. А. Магадова, З. Р. Давлетов, Ю. Ж. Вагапова // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2023. — Т. 334, № 2. — [С. 206-216].; http://earchive.tpu.ru/handle/11683/74829

10
Academic Journal

Contributors: The investigation has been conducted within basic scientific topic № 1021051402790-6 "Study of immunopathology, diagnosis and therapy in the early stages of systemic rheumatic diseases.", Статья подготовлена в рамках фундаментальной темы № 1021051402790-6 «Изучение иммунопатологии, диагностики и терапии на ранних стадиях системных ревматических заболеваний».

Superior Title: Modern Rheumatology Journal; Том 17, № 4 (2023); 13-18 ; Современная ревматология; Том 17, № 4 (2023); 13-18 ; 2310-158X ; 1996-7012

File Description: application/pdf

Relation: https://mrj.ima-press.net/mrj/article/view/1451/1376; Jeggo PA, Pear LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016 Jan;16(1):35-42. doi:10.1038/nrc.2015.4. Epub 2015 Dec 15.; Migliore L, Coppede F, Fenech M, Thomas P. Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis. 2011 Jan;26(1):85-92. doi:10.1093/mutage/geq067.; Rube CE, Fricke A, Widmann TA, et al. Accumulation of DNA Damage in Hematopoietic Stem and Progenitor Cells during Human Aging. PLoS One. 2011 Mar 7;6(3): e17487. doi:10.1371/journal.pone.0017487.; Vozilova AV, Shagina NB, Degteva MO, Akleyev AV. Chronic radioisotope effects on residents of the Techa river (Russia) region: cytogenetic 323 analysis more than 50 years after onset of exposure. Mutat Res. 2013 Aug 30;756(1-2):115-8. doi:10.1016/j.mrgentox.2013.05.016. Epub 2013 Jun 7.; Pezone A, Olivieri F, Napoli MV, et al. In-flammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023 Apr;19(4): 200-211. doi:10.1038/s41584-022-00905-1. Epub 2023 Feb 7.; Passerini V, Ozeri-Galai E, de Pagter MS, et al. The presence of extra chromosomes leads to genomic instability. Nat Commun. 2016 Feb 15;7:10754. doi:10.1038/ncomms10754.; Chrzanowska K, Gregorek H, Dembowska-Baginska B, et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012 Feb 28;7:13. doi:10.1186/1750-1172-7-13.; Ванюшин БФ. Метилирование ДНК и эпигенетика. Генетика. 2006;42(9):985-997.; Кузьмина НС, Лаптева НШ, Русинова ГГ и др. Гиперметилирование промоторов генов в лейкоцитах крови человека в отдаленный период после перенесенного радиационного воздействия. Радиационная биология. Радиоэкология. 2017;(4):341-356.; Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886-95. doi:10.1016/s0960-9822(00)00610-2.; Sedelnikova OA, Pilch DR, Redon C, Bonner WM. Histone H2AX in DNA damage and repair. Cancer Biol Ther. 2003 May-Jun;2(3):233-5. doi:10.4161/cbt.2.3.373.; Pilch DR, Sedelnikova OA, Redon C, et al. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol. 2003 Jun;81(3):123-9. doi:10.1139/o03-042.; Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015 Mar 11; 43(5):2489-98. doi:10.1093/nar/gkv061. Epub 2015 Feb 20.; Stucki M, Clapperton JA, Mohammad D, et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005 Dec 29;123(7):1213-26. doi:10.1016/j.cell.2005.09.038.; Iwabuchi K, Basu BP, Kysela B, et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J Biol Chem. 2003 Sep 19;278(38):36487-95. doi:10.1074/jbc.M304066200. Epub 2003 Jun 24.; Kuo LJ, Yang LX. Gamma-H2AX — a novel biomarker for DNA double-strand breaks. In Vivo. 2008 May-Jun;22(3):305-9.; Chowdury D, Keogh MC, Ishii H, et al. Y-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005 Dec 9; 20(5):801-9. doi:10.1016/j.molcel.2005.10.003. Epub 2005 Nov 28.; Souliotis VL, Vlachogiannis NI, Pappa M, et al. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci. 2019 Dec 20;21(1):55. doi:10.3390/ijms21010055.; Ferrucci, L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018 Sep;15(9):505-522. doi:10.1038/s41569-018-0064-2.; Nastasi C, Mannarino L, D'Incalci M. DNA damage response and immune defense. Int J Mol Sci. 2020 Oct 12;21(20):7504. doi:10.3390/ijms21207504.; Alfano M. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat Commun. 2021 Sep 1;12(1):5205. doi:10.1038/s41467-021-25544-0.; Higo T. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun. 2017 Apr 24;8:15104. doi:10.1038/ncomms15104.; Saez GT. DNA Damage and Repair in Degenerative Diseases 2016. Int J Mol Sci. 2017 Jan 16;18(1):166. doi:10.3390/ijms18010166.; Klein B, Gunther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol. 2021 Jul 23;12:715723. doi:10.3389/fimmu.2021.715723. eCollection 2021.; Burton DG. Faragher RG. Cellular senescence: from growth arrest to immunogenic conversion. Age (Dordr). 2015;37(2):27. doi:10.1007/s11357-015-9764-2. Epub 2015 Mar 20.; Souliotis VL, Sfikakis PP. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus. 2015 Jul;24(8):804-15. doi:10.1177/0961203314565413. Epub 2014 Dec 26.; Souliotis VL, Vougas K, Gorgoulis VG, Sfikakis PP. Defective DNA repair and chromatin organization in patients with quiescent systemic lupus erythematosus. Arthritis Res Ther. 2016 Aug 4;18(1):182. doi:10.1186/s13075-016-1081-3.; Micheli C, Parma A, Tani C, et al. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis. 2021 Nov 29;36(6):429-436. doi:10.1093/mutage/geab036.; Namas R, Renauer P, Ognenovski M, et al. Histone H2AX phosphorylation as a measure of DNA double-strand breaks and a marker of environmental stress and disease activity in lupus. Lupus Sci Med. 2016 Apr 29;3(1):e000148. doi:10.1136/lupus-2016-000148. eCollection 2016.; Rodier F, Coppe JP, Patil CK, et al. Persi-stent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009 Aug;11(8):973-9. doi:10.1038/ncb1909. Epub 2009 Jul 13.; Nakamura AJ, Redon CE, Bonner WM, Sedelnikova OA. Telomeredependent and telomere-independent origins of endogenous DNA damage in tumor cells. Aging (Albany NY). 2009 Feb 4;1(2):212-8. doi:10.18632/aging.100019.; Reddig A, Voss L, Guttek K, et al. Impact of Different JAK Inhibitors and Methotrexate on Lymphocyte Proliferation and DNA Damage. J Clin Med. 2021 Apr 1;10(7):1431. doi:10.3390/jcm10071431.; https://mrj.ima-press.net/mrj/article/view/1451

11
Academic Journal

Superior Title: Modern Rheumatology Journal; Том 17, № 3 (2023); 96-103 ; Современная ревматология; Том 17, № 3 (2023); 96-103 ; 2310-158X ; 1996-7012

File Description: application/pdf

Relation: https://mrj.ima-press.net/mrj/article/view/1438/1368; Saez GT. DNA Damage and Repair in Degenerative Diseases 2016. Int J Mol Sci. 2017 Jan 16;18(1):166. doi:10.3390/ijms18010166.; Cirkel GA, Gadellaa-van Hooijdonk CG, Koudijs MJ, et al. Tumor heterogeneity and personalized cancer medicine: are we being outnumbered? Future Oncol. 2014 Feb; 10(3):417-28. doi:10.2217/fon.13.214.; Podhorecka M, Skladanowski A, Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids. 2010 Aug 3;2010:920161. doi:10.4061/2010/920161.; Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001 May 17;411(6835):366-74. doi:10.1038/35077232.; Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009 Oct 8;361(15): 1475-85. doi:10.1056/NEJMra0804615.; Schuler N, Rübe CE. Accumulation of DNA Damage-Induced Chromatin Alterations in Tissue-Specific Stem Cells: The Driving Force of Aging? PLoS One. 2013 May 17;8(5):e63932. doi:10.1371/journal.pone.0063932. Print 2013.; Giunta S, Belotserkovskaya R, Jackson SP. DNA damage signaling in response to doublestrand breaks during mitosis. J Cell Biol. 2010 Jul 26;190(2):197-207. doi:10.1083/jcb.200911156.; Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science. 2002 May 3;296(5569): 922-7. doi:10.1126/science.1069398. Epub 2002 Apr 4.; Valdiglesias V, Giunta S, Fenech M. gH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 2013 Jul-Sep;753(1):24-40. doi:10.1016/j.mrrev.2013.02.001. Epub 2013 Feb 13.; Sedelnikova OA, Rogakou EP, Panyutin IG, et al. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gH2AX antibody. Radiat Res. 2002 Oct;158(4):486-92. doi:10.1667/0033-7587(2002)158[0486:qdoiid]2.0.co;2.; Siddiqui MS, Francois M, Fenech MF, et al. Persistent H2AX: A promising molecular marker of DNA damage. Mutat Res Rev Mutat Res. 2015 Oct-Dec;766:1-19. doi:10.1016/j.mrrev.2015.07.001. Epub 2015 Jul 21; Buchali А, Heiserich L, Bauer P. Baseline H2AX foci, 53BP1 values and late morbidity after definitive radio-chemotherapy in head and neck carcinoma patients. J Solid Tumors. 2017;7(2):7-13. doi:10.5430/jst.v7n2p7.; Koch U, Höhne K, von Neubeck C, et al. Residual H2AX foci predict local tumour control after radiotherapy. Radiother Oncol. 2013 Sep;108(3):434-9. doi:10.1016/j.radonc.2013.06.022. Epub 2013 Jul 25.; Ivashkevich A, Redon CE, Nakamura AJ, et al. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 2012 Dec 31;327 (1-2):123-33. doi:10.1016/j.canlet.2011.12. 025. Epub 2011 Dec 21.; Sak A, Grehl S, Erichsen P, et al. gH2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose-distribution, irradiated site and time from start of treatment. Int J Radiat Biol. 2007 Oct;83(10):639-52. doi:10.1080/09553000701596118.; Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998 Mar 6;273(10):5858-68. doi:10.1074/jbc.273.10.5858.; Runge R, Hiemann R, Wendisch M, et al. Fully automated interpretation of ionizing radiation induced H2AX foci by the novel pattern recognition system AKLIDES®. Int J Radiat Biol. 2012 May;88(5):439-47. doi:10.3109/09553002.2012.658468. Epub 2012 Mar 26.; Reddig A, Rübe CE, Rödiger S. DNA damage assessment and potential applications in laboratory diagnostics and precision medicine. J Lab Precis Med. 2018 Apr;3(4):31. doi:10.21037/jlpm.2018.03.06; Toyooka T, Ishihama M, Ibuki Y. Phosphorylation of histone H2AX is a powerful tool for detecting chemical photogenotoxicity. J Invest Dermatol. 2011 Jun;131(6):1313-21. doi:10.1038/jid.2011.28. Epub 2011 Mar 3.; Danese E, Lippi G, Buonocore R. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes. Ann Transl Med. 2017 Jul;5(13):272. doi:10.21037/atm.2017.04.35.; Belyaev IY, Markovа E, Hillert L, et al. Microwaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/ gamma-H2AX DNA repair foci in human lymphocytes. Bioelectromagnetics. 2009 Feb; 30(2):129-41. doi:10.1002/bem.20445.; Lippi G, Buonocore R, Tarperi C, et al. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise. Clin Chim Acta. 2016 Sep 1;460:146-51. doi:10.1016/j.cca.2016.06.041. Epub 2016 Jun 30.; Morath J, Moreno-Villanueva M, Humami G, et al. Effects of Psychotherapy on DNA Strand Break Accumulation Originating from Traumatic Stress. Psychother Psychosom. 2014; 83(5):289-97. doi:10.1159/000362739. Epub 2014 Aug 6.; Schurman SH, Dunn CA, Greaves R, et al. Age-related disease association of endogenous gamma-H2AX foci in mononuclear cells derived from leukapheresis. PLoS One. 2012;7(9):e45728. doi:10.1371/journal.pone.0045728. Epub 2012 Sep 21.; Sedelnikova OA, Bonner WM. H2AX in Cancer Cells A Potential Biomarker for Cancer Diagnostics, Prediction and Recurrence. Cell Cycle. 2006 Dec;5(24):2909-13. doi:10.4161/cc.5.24.3569. Epub 2006 Dec 15.; Mei L, Hu Q, Peng J, et al. Phospho-histone H2AX is a diagnostic and prognostic marker for epithelial ovarian cancer. Int J Clin Exp Pathol. 2015 May 1;8(5):5597-602. eCollection 2015.; Warters RL, Adamson PJ, Pond CD, et al. Melanoma cells express elevated levels of phosphorylated histone H2AX foci. J Invest Dermatol. 2005 Apr;124(4):807-17. doi:10.1111/j.0022-202X.2005.23674.x.; Brunner AH, Hinterholzer S, Riss P, et al. Expression of γ-H2AX in endometrial carcinomas: an immunohistochemical study with p53. Gynecol Oncol. 2011 Apr;121(1):206-11. doi:10.1016/j.ygyno.2010.11.037. Epub 2010 Dec 23.; Matthaios D, Foukas PG, Kefala M, et al. γ-H2AX expression detected by immunohistochemistry correlates with prognosis in early operable non-small cell lung cancer. Onco Targets Ther. 2012;5:309-14. doi:10.2147/OTT.S36995. Epub 2012 Oct 30.; Nagelkerke A, van Kuijk SJ, Martens JW, et al. Poor prognosis of constitutive γ-H2AX expressing triple negative breast cancers is associated with telomere length. Biomark Med. 2015;9(4):383-90. doi:10.2217/bmm.15.2.; Siddiqui MS, Francois M. Persistent gH2AX: A promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res. 2015 Oct-Dec;766:1-19. doi:10.1016/j.mrrev.2015.07.001. Epub 2015 Jul 21.; Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48-58. doi:10.1038/nrc706.; Shukla S, Ohnuma S, Ambudkar SV. Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets. 2011 May;12(5):621-30. doi:10.2174/138945011795378540.; Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998 Mar 17;37(11):3594-601. doi:10.1021/bi972709x.; Van de Ven R, Oerlemans R, van der Heijden JW, et al. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukoc Biol. 2009 Nov;86(5):1075-87. doi:10.1189/jlb.0309147. Epub 2009 Sep 10.; Aouali N, Eddabra L, Macadre J. Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol. 2005 Oct; 56(1):61-70. doi:10.1016/j.critrevonc.2004. 12.010.; Reddig A, Lorenz S, Hiemann R, et al. Assessment of modulated cytostatic drug resistance by automated γH2AX analysis. Cytometry A. 2015 Aug;87(8):724-32. doi:10.1002/cyto.a.22667. Epub 2015 Apr 2.; Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012 Dec;82(6): 1008-21. doi:10.1124/mol.112.079129. Epub 2012 Jul 23.; Simi S, Ballardin M, Casella M, et al. Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res. 2008 Oct 14;645 (1-2):39-43. doi:10.1016/j.mrfmmm.2008.08.011. Epub 2008 Aug 30.; Lee JW, Kim MS, Kim YJ, et al. Genotoxic effects of 3 T magnetic resonance imaging in cultured human lymphocytes. Bioelectromagnetics. 2011 Oct;32(7):535-42. doi:10.1002/bem.20664. Epub 2011 Mar 15.; Fiechter M, Stehli J, Fuchs TA, et al. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J. 2013 Aug;34(30):2340-5. doi:10.1093/eurheartj/eht184. Epub 2013 Jun 21.; Lancellotti P, Nchimi A, Delierneux C, et al. Biological effects of cardiac magnetic resonance on human blood cells. Circ Cardiovasc Imaging. 2015 Sep;8(9):e003697. doi:10.1161/CIRCIMAGING.115.003697.; Reddig A, Fatahi M, Friebe B, et al. Analysis of DNA double-strand breaks and cytotoxicity after 7 tesla magnetic resonance imaging of isolated human lymphocytes. PLoS One. 2015 Jul 15;10(7):e0132702. doi:10.1371/journal.pone.0132702. eCollection 2015.; Fatahi M, Reddig A, Vijayalaxmi, et al. DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T magnetic resonance imaging. Neuroimage. 2016 Jun;133: 288-93. doi:10.1016/j.neuroimage.2016.03.023. Epub 2016 Mar 16.; Reddig A, Fatahi M, Roggenbuck D, et al. Impact of in vivo highfield-strength and ultrahigh-field-strength MR imaging on DNA doublestrand-break formation in human lymphocytes. Radiology. 2017 Mar;282(3):782-9. doi:10.1148/radiol.2016160794. Epub 2016 Sep 30.; Friebe B, Godenschweger F, Fatahi M. The potential toxic impact of different gadolinium-based contrast agents combined with 7-T MRI on isolated human lymphocytes. Eur Radiol Exp. 2018 Nov 28;2(1):40. doi:10.1186/s41747-018-0069-y.; Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1323-31. doi:10.1016/j.ijrobp.2009.02.057.; Rube CE, Fricke A, Schneider R, et al. DNA repair alterations in children with pediatric malignancies: novel opportunities to identify patients at risk for high-grade toxicities. Int J Radiat Oncol Biol Phys. 2010 Oct 1; 78(2):359-69. doi:10.1016/j.ijrobp.2009.08.052. Epub 2010 Feb 12.; Souliotis VL, Vlachogiannis NI, Pappa M, et al. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci. 2019 Dec 20;21(1):55. doi:10.3390/ijms21010055.; Davies RC, Pettijohn K, Fike F, et al. Defective DNA Double-Strand Break Repair in Pediatric Systemic Lupus Erythematosus. Arthritis Rheum. 2012 Feb;64(2):568-78. doi:10.1002/art.33334.; Souliotis VL, Sfikakis PP. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus. 2015 Jul;24(8):804-15. doi:10.1177/0961203314565413. Epub 2014 Dec 26.; Namas R, Renauer P, Ognenovski M, et al. Histone H2AX phosphorylation as a measure of DNA double-strand breaks and a marker of environmental stress and disease activity in lupus. Lupus Sci Med. 2016 Apr 29; 3(1):e000148. doi:10.1136/lupus-2016-000148. eCollection 2016.; Bassi C, Xavier DJ, Palomino G, et al. Efficiency of the DNA repair and polymorphisms of the XRCC1, XRCC3 and XRCC4 DNA repair genes in systemic lupus erythematosus. Lupus. 2008 Nov;17(11):988-95. doi:10.1177/0961203308093461.; Fell VL, Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond. Mutat Res Rev Mutat Res. 2015 Jan-Mar;763: 15-29. doi:10.1016/j.mrrev.2014.06.002. Epub 2014 Jul 4.; Schmidt E, Tony HP, Brocker EB, Kneitz C. Sun-induced lifethreatening lupus nephritis. Ann N Y Acad Sci. 2007 Jun;1108: 35-40. doi:10.1196/annals.1422.004.; Shao L, Fujii H, Colmegna I, et al. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J Exp Med. 2009 Jun 8; 206(6):1435-49. doi:10.1084/jem.20082251. Epub 2009 May 18.; Souliotis VL, Vlachogiannis NI, Pappa M. DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin Immunol. 2019 Jun;203:28-36. doi:10.1016/j.clim.2019.03.009. Epub 2019 Mar 28.; Galita G, Brzezinska O, Gulbas I, et al. Increased Sensitivity of PBMCs Isolated from Patients with Rheumatoid Arthritis to DNA Damaging Agents Is Connected with Inefficient DNA Repair. J Clin Med. 2020 Apr 1;9(4): 988. doi:10.3390/jcm9040988.; Palomino GM, Bassi CL, Wastowski IJ, et al. Patients with systemic sclerosis present increased DNA damage differentially associated with DNA repair gene polymorphisms. J Rheumatol. 2014 Mar;41(3):458-65. doi:10.3899/jrheum.130376. Epub 2014 Feb 1.; https://mrj.ima-press.net/mrj/article/view/1438

12
Academic Journal

Contributors: The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121021800098-4), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121021800098-4)

Superior Title: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 3 (2023); 247-261 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 3 (2023); 247-261 ; 2619-1156 ; 2221-996X

File Description: application/pdf

Relation: https://www.biopreparations.ru/jour/article/view/499/739; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/656; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/657; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/739; Ребриков ДВ. Редактирование генома человека. Вестник РГМУ. 2016;(3):4–15. EDN: WFQBMX; Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387; Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019;566(7745):440–2. https://doi.org/10.1038/d41586-019-00673-1; Cohen J. Did CRISPR help—or harm—the first-ever gene-edited babies? Science. 2019. https://doi.org/10.1126/science.aay9569; Cox D, Platt R, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31. https://doi.org/10.1038/nm.3793; Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4(9):712–20. https://doi.org/10.1038/nrm1202; Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet. 2014;5:175. https://doi.org/10.3389/fgene.2014.00175; Choi EH, Yoon S, Koh YE, Seo Y-J, Kim KP. Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med. 2020;52:1220–9. https://doi.org/10.1038/s12276-020-0481-2; Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, et al. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer. 2021;21(1):1154. https://doi.org/10.1186/s12885-021-08863-9; Lai JKH, Toh PJY, Cognart HA, Chouhan G, Saunders TE. DNA-damage induced cell death in yap1;wwtr1 mutant epidermal basal cells. Elife. 2022;11:e72302. https://doi.org/10.7554/eLife.72302; Yamaguchi T, Uchida E, Okada T, Ozawa K, Onodera M, Kume A, et al. Aspects of gene therapy products using gene editing technology in Japan. Hum Gene Ther. 2020;31(19–20):1043–53. https://doi.org/10.1089/hum.2020.156; Richardson C, Ray G, DeWitt M, Curie G, Corn J. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–44. https://doi.org/10.1038/nbt.3481; DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8(360):360ra134. https://doi.org/10.1126/scitranslmed.aaf9336; Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn J, Murthy N. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. 2017;6:e25312. https://doi.org/10.7554/eLife.25312; Горяев АА, Савкина МВ, Мефед КМ, Бондарев ВП, Меркулов ВА, Тарасов ВВ. Редактирование генома и биомедицинские клеточные продукты: современное состояние, безопасность и эффективность. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(3):140–9. https://doi.org/10.30895/2221-996X-2018-18-3-140-149; Kim M-S, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells. 2017;40(8):533–41. https://doi.org/10.14348/molcells.2017.0139; Yuanyuan X., Zhanjun Li. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401–15. https://doi.org/10.1016/j.csbj.2020.08.031; You L, Tong R, Li M, Liu Y, Xue J, Lu Y. Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol Ther Methods Clin Dev. 2019;13:359–70. https://doi.org/10.1016/j.omtm.2019.02.008; Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, et al. CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomater Res. 2023;27(1):46. https://doi.org/10.1186/s40824-023-00381-y; Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054; Erkut E, Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci. 2022;23(3):1832. https://doi.org/10.3390/ijms23031832; Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin Biol Ther. 2021;21(6):767–80. https://doi.org/10.1080/14712598.2021.1869208; Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–59. https://doi.org/10.1056/NEJMra1800729; Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143; Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86–91. https://doi.org/10.1126/science.aau1549; Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0; Chandrasekaran AP, Song M, Kim KS, Ramakrishna S. Different methods of delivering CRISPR/Cas9 into cells. Prog Mol Biol Transl Sci. 2018;159:157–76. https://doi.org/10.1016/bs.pmbts.2018.05.001; Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):e1609. https://doi.org/10.1002/wnan.1609; Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. https://doi.org/10.1016/j.jconrel.2017.09.012; Fu Y, Foden J, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. https://doi.org/10.1038/nbt.2623; Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4(11):e264. https://doi.org/10.1038/mtna.2015.37; Davies B. The technical risks of human gene editing. Hum Reprod. 2019;34(11):2104–11. https://doi.org/10.1093/humrep/dez162; Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell. 2020;183(6):1650-64.e15. https://doi.org/10.1016/j.cell.2020.10.025; Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12(4):393–4. https://doi.org/10.1016/j.stem.2013.03.006; Obermeier M, Vadolas J, Verhulst S, Goossens E, Baert Y. Lipofection of non-integrative CRISPR/Cas9 ribonucleoproteins in male germline stem cells: a simple and effective knockout tool for germline genome engineering. Front Cell Dev Biol. 2022;10:891173. https://doi.org/10.3389/fcell.2022.891173; Bittlinger M, Hoffmann D, Sierawska AK, Mertz M, Schambach A, Strech D. Risk assessment in gene therapy and somatic genome-editing: An expert interview study. Gene and Genome Editing. 2022;3–4:100011. https://doi.org/10.1016/j.ggedit.2022.100011; Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204. https://doi.org/10.1038/nm.2088; Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, et al. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018;46(16):8417–34. https://doi.org/10.1093/nar/gky653; Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71. https://doi.org/10.1038/nbt.4192; Boroviak K, Fu B, Yang F, Doe B, Bradley A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep. 2017;7(1):12867. https://doi.org/10.1038/s41598-017-12740-6; Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8. https://doi.org/10.1038/nbt.3469; Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH. Use of genome engineering to create patient specific MLL translocations in primary human hematopoietic stem and progenitor cells. PLoS One. 2015;10(9):e0136644. https://doi.org/10.1371/journal.pone.0136644; Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30. https://doi.org/10.1038/s41591-018-0049-z; Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138; Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46. https://doi.org/10.1038/s41591-018-0050-6; Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15(7):512–4. https://doi.org/10.1038/s41592-018-0011-5; Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. https://doi.org/10.1016/j.cell.2013.08.021; Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):355–70. https://doi.org/10.1016/j.molcel.2016.07.004; Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37(6):657–66. https://doi.org/10.1038/s41587-019-0095-1; Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8. https://doi.org/10.1126/science.aad5227; Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018;4:63. https://doi.org/10.1038/s41421-018-0069-3; Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–8. https://doi.org/10.1038/nbt.3609; Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081; Shen C-C, Hsu M-N, Chang C-W, Lin M-W, Hwu J-R, Tu Y, Hu Y-C. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res. 2019;47(3):e13. https://doi.org/10.1093/nar/gky1165; Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep. 2017;7:42081. https://doi.org/10.1038/srep42081; Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V. WGE: a CRISPR database for genome engineering. Bioinformatics. 2015;31(18):3078–80. https://doi.org/10.1093/bioinformatics/btv308; Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaudet J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. https://doi.org/10.1186/s13059-016-1012-2; Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci USA. 2017;114(52):E11257-E11266. https://doi.org/10.1073/pnas.1714640114; Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 2015;7:100. https://doi.org/10.1186/s13073-015-0221-8; Рачинская ОА, Меркулов ВА. Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(1):25–32. https://doi.org/10.30895/2221-996X-2018-18-1-25-32; https://www.biopreparations.ru/jour/article/view/499

13
Conference

Contributors: Юркин, А. А.

File Description: application/pdf

Relation: Проблемы геологии и освоения недр : труды XXVI Международного симпозиума имени академика М. А. Усова студентов и молодых учёных, посвященный 90-летию со дня рождения Н. М. Рассказова, 120-летию со дня рождения Л. Л. Халфина, 50-летию научных молодежных конференций имени академика М. А. Усова, Томск, 4-8 апреля 2022 г. Т. 2; Кондратенко, Ф. И. Разработка каскадной модели для прогнозирования эффекта от ГРП / Ф. И. Кондратенко, А. С. Мурачев; науч. рук. А. А. Юркин // Проблемы геологии и освоения недр : труды XXVI Международного симпозиума имени академика М. А. Усова студентов и молодых учёных, посвященный 90-летию со дня рождения Н. М. Рассказова, 120-летию со дня рождения Л. Л. Халфина, 50-летию научных молодежных конференций имени академика М. А. Усова, Томск, 4-8 апреля 2022 г. : в 2 т. — Томск : Изд-во ТПУ, 2022. — Т. 2. — [С. 32-34].; http://earchive.tpu.ru/handle/11683/74042

14
Conference

Contributors: Цибульникова, Маргарита Радиевна

File Description: application/pdf

Relation: Проблемы геологии и освоения недр : труды XXVI Международного симпозиума имени академика М. А. Усова студентов и молодых учёных, посвященный 90-летию со дня рождения Н. М. Рассказова, 120-летию со дня рождения Л. Л. Халфина, 50-летию научных молодежных конференций имени академика М. А. Усова, Томск, 4-8 апреля 2022 г. Т. 2; Пискунов, С. А. Совершенствование технологических подходов гидравлического разрыва пласта / С. А. Пискунов, А. Ю. Масаренко; науч. рук. М. Р. Цибульникова // Проблемы геологии и освоения недр : труды XXVI Международного симпозиума имени академика М. А. Усова студентов и молодых учёных, посвященный 90-летию со дня рождения Н. М. Рассказова, 120-летию со дня рождения Л. Л. Халфина, 50-летию научных молодежных конференций имени академика М. А. Усова, Томск, 4-8 апреля 2022 г. : в 2 т. — Томск : Изд-во ТПУ, 2022. — Т. 2. — [С. 309-311].; http://earchive.tpu.ru/handle/11683/73950

19
Academic Journal

Superior Title: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

File Description: application/pdf

Relation: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2022. Т. 333, № 1; Образование трещин гидравлического разрыва пласта в карбонатных сложнопостроенных коллекторах с естественной трещиноватостью / Д. А. Мартюшев, И. Н. Пономарева, Е. В. Филиппов, Ли Ювэй // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2022. — Т. 333, № 1. — [С. 85-94].; http://earchive.tpu.ru/handle/11683/69420

20
Academic Journal

Superior Title: Известия Томского политехнического университета ; Bulletin of the Tomsk Polytechnic University

File Description: application/pdf

Relation: Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. 2022. Т. 333, № 1; Леонов, А. П. Оценка срока службы изоляции кабельных изделий для систем питания и управления горношахтного электрооборудования / А. П. Леонов, Т. М. Солдатенко // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2022. — Т. 333, № 1. — [С. 113-120].; http://earchive.tpu.ru/handle/11683/69403