Showing 1 - 20 results of 59 for search 'Bottom water temperature' Narrow Search
1

File Description: text/tab-separated-values, 4519 data points

Relation: Farmer, Jesse R; Keller, Katherine; Poirier, Robert K; Dwyer, Gary S; Schaller, Morgan F; Coxall, Helen; O'Regan, Matt; Cronin, Thomas M (2023): A 600 kyr reconstruction of deep Arctic seawater δ 18 O from benthic foraminiferal δ 18 O and ostracode Mg ∕ Ca paleothermometry. Climate of the Past, 19(3), 555-578, https://doi.org/10.5194/cp-19-555-2023; Cronin, Thomas M; Dwyer, Gary S; Caverly, E K; Farmer, Jesse R; DeNinno, L H; Rodriguez-Lazaro, J; Gemery, L (2017): Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago. Scientific Reports, 7(1), 14475, https://doi.org/10.1038/s41598-017-13821-2; Cronin, Thomas M; Keller, Katherine; Farmer, Jesse R; Schaller, Morgan F; O'Regan, Matt; Poirier, Robert K; Coxall, Helen; Dwyer, Gary S; Bauch, Henning A; Kindstedt, Ingalise G; Jakobsson, Martin; Marzen, Rachel; Santin, Emiliano (2019): Interglacial Paleoclimate in the Arctic. Paleoceanography and Paleoclimatology, 34(12), 1959-1979, https://doi.org/10.1029/2019PA003708; Thirumalai, Kaustubh; Quinn, Terrence Michael; Marino, Gianluca (2016): Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry. Paleoceanography, 31(10), 1409-1422, https://doi.org/10.1002/2016PA002970; https://doi.pangaea.de/10.1594/PANGAEA.958539; https://doi.org/10.1594/PANGAEA.958539

2

File Description: text/tab-separated-values, 1100 data points

Relation: Lochte, Annalena Antonia; Repschläger, Janne; Kienast, Markus; Garbe-Schönberg, Dieter; Andersen, Nils; Hamann, Christian; Schneider, Ralph R (2019): Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay Ice Saddle collapse. Nature Communications, 10(1), https://doi.org/10.1038/s41467-019-08408-6; Austermann, Jacqueline; Mitrovica, Jerry X; Latychev, Konstantin; Milne, Glenn A (2013): Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nature Geoscience, 6(7), 553-557, https://doi.org/10.1038/ngeo1859; Martin, Pamela A; Lea, David W (2002): A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophysics, Geosystems, 3(10), 1-8, https://doi.org/10.1029/2001GC000280; Skirbekk, Kari; Hald, Morten; Marchitto, Thomas M; Junttila, Juho; Sørensen, Steffen Aagaard (2016): Benthic foraminiferal growth seasons implied from Mg/Ca-temperature correlations for three Arctic species. Geochemistry, Geophysics, Geosystems, 17(11), 4684-4704; https://doi.pangaea.de/10.1594/PANGAEA.945715; https://doi.org/10.1594/PANGAEA.945715

4

File Description: text/tab-separated-values, 282 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932746; https://doi.org/10.1594/PANGAEA.932746

5

File Description: text/tab-separated-values, 175 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932731; https://doi.org/10.1594/PANGAEA.932731

6

Time: 1052-1

File Description: text/tab-separated-values, 193 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932727; https://doi.org/10.1594/PANGAEA.932727

7

File Description: text/tab-separated-values, 154 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932720; https://doi.org/10.1594/PANGAEA.932720

8

File Description: text/tab-separated-values, 232 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932719; https://doi.org/10.1594/PANGAEA.932719

9

File Description: text/tab-separated-values, 107 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932716; https://doi.org/10.1594/PANGAEA.932716

10

File Description: text/tab-separated-values, 22 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932760; https://doi.org/10.1594/PANGAEA.932760

11

Time: 1052-1

File Description: text/tab-separated-values, 29 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932759; https://doi.org/10.1594/PANGAEA.932759

12

File Description: text/tab-separated-values, 34 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932737; https://doi.org/10.1594/PANGAEA.932737

13

File Description: text/tab-separated-values, 21 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932703; https://doi.org/10.1594/PANGAEA.932703

14

Time: 1052-1

File Description: text/tab-separated-values, 21 data points

Relation: https://doi.org/10.1594/PANGAEA.932775; Portilho-Ramos, Rodrigo Costa; Titschack, Jürgen; Wienberg, Claudia; Siccha, Michael; Yokoyama, Yusuke; Hebbeln, Dierk (2022): Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 20(5), e3001628, https://doi.org/10.1371/journal.pbio.3001628; https://doi.pangaea.de/10.1594/PANGAEA.932701; https://doi.org/10.1594/PANGAEA.932701

15

File Description: text/tab-separated-values, 144 data points

Relation: https://doi.org/10.1594/PANGAEA.931921; Barker, S; Greaves, Mervyn; Elderfield, Henry (2003): A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems, 4(9), https://doi.org/10.1029/2003GC000559; Bentov, Shmuel; Erez, Jonathan (2006): Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective. Geochemistry, Geophysics, Geosystems, 7(1), https://doi.org/10.1029/2005GC001015; Berends, Constantijn J; de Boer, Bas; Dolan, Aisling M; Hill, Daniel J; van de Wal, Roderik S W (2019): Modelling ice sheet evolution and atmospheric CO2 during the Late Pliocene. Climate of the Past, 15(4), 1603-1619, https://doi.org/10.5194/cp-15-1603-2019; Bintanja, Richard; van de Wal, Roderik S W; Oerlemans, Johannes (2005): Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437, 125-128, https://doi.org/10.1038/nature03975; Boyle, Edward A; Keigwin, Lloyd D (1985): Comparison of Atlantic and Pacific paleochemical records for the last 215.000 years: changes in deep ocean circulation and chemical inventories. Earth and Planetary Science Letters, 76(1-2), 135-150, https://doi.org/10.1016/0012-821X(85)90154-2; Bryan, Sean P; Marchitto, Thomas M (2008): Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography, 23(2), PA2220, https://doi.org/10.1029/2007PA001553; Casazza, L R (2012): Symbiosis in the fossil record: Eocene Nummulites and Pleistocene reefs of Egypt. University of California, Berkley, 115 pp.; Collen, J D; Burgess, C J (1979): Calcite dissolution, overgrowth and recrystallization in the benthic foraminiferal genus Notorotalia. 53(6), 1343-1353; d'Hondt, Steven L; Arthur, Michael A (1996): Late Cretaceous Oceans and the Cool Tropic Paradox. Science, 271(5257), 1838-1841, https://doi.org/10.1126/science.271.5257.1838; Edgar, Kirsty M; Anagnostou, Eleni; Pearson, Paul N; Foster, Gavin L (2015): Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochimica et Cosmochimica Acta, 166, 189-209, https://doi.org/10.1016/j.gca.2015.06.018; Edgar, Kirsty M; Pälike, Heiko; Wilson, Paul A (2013): Testing the impact of diagenesis on the d18O and d13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial pacific. Paleoceanography, 28(3), 468-480, https://doi.org/10.1002/palo.20045; Elderfield, Henry; Ferretti, Patrizia; Greaves, Mervyn; Crowhurst, Simon J; McCave, I Nick; Hodell, David A; Piotrowski, Alexander M (2012): Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science, 337(6095), 704-709, https://doi.org/10.1126/science.1221294; Elderfield, Henry; Greaves, Mervyn; Barker, S; Hall, Ian R; Tripati, Aradhna K; Ferretti, Patrizia; Crowhurst, Simon J; Booth, Linda; Daunt, C (2010): A record of bottom water temperature and seawater d18O for the Southern Ocean over the past 440kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews, 29(1-2), 160-169, https://doi.org/10.1016/j.quascirev.2009.07.013; Elderfield, Henry; Yu, J M; Anand, Pallavi; Kiefer, T; Nyland, Birgitte (2006): Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth and Planetary Science Letters, 250(3-4), 633-649, https://doi.org/10.1016/j.epsl.2006.07.041; Emery, W E; Tomson, R E (accepted): Data Analysis Methods in Physical Oceanography. Elsevier, 2nd Edition, https://doi.org/10.1016/B978-0-444-50756-3.X5000-X; Felder, Sonja; Henderson, Andrew C G H; Leng, Melanie J; Sloane, Hilary J (accepted): Data report: bulk sediment organic matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Site U1427 (250–530 m CCSF-D_Patched). In: Tada, R.; Murray, R.W.; Alvarez Zarikian, C.A.; Expedition 346 Scientists (ed.), Asian Monsoon, Proceedings of the IODP, 346, International Ocean Discovery Program, https://doi.org/10.2204/iodp.proc.346.207.2021; Felder, Sonja; Sagawa, Takuya; Greaves, Mervyn; Leng, Melanie J; Ikehara, Ken; Kimoto, Kastunori; Hasegawa, Siro; Wagner, Thomas; Henderson, Andrew (in review): Palaeoceanography of the Japan Sea across the mid-Pleistocene transition: Insights from IODP Exp. 346, Site U1427. Paleoceanography and Paleoclimatology; Flügel, Erik Horst Wolfgang (2004): Integrated facies analysis. In: Flügel, E. (Ed.) Microfacies of Carbonate Rocks - Analysis, Interpretation and Application. Berlin-Dordrecht-Heidelberg-London-New York: Springer, 646 pp.; Fox, L R; Wade, Bridget S (2013): SYSTEMATIC TAXONOMY OF EARLY-MIDDLE MIOCENE PLANKTONIC FORAMINIFERA FROM THE EQUATORIAL PACIFIC OCEAN: INTEGRATED OCEAN DRILLING PROGRAM, SITE U1338. Journal of Foraminiferal Research, 43(4), 374-405, https://doi.org/10.2113/gsjfr.43.4.374; Goyet, Catherine; Healy, R J; Ryan, J N (2000): Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. ORNL/CDIAC-127, NDP-076; Irino, Tomohisa; Tada, Ryuji; Ikehara, Ken; Sagawa, Takuya; Karasuda, A; Kurokawa, Shunsuke; Seki, Arisa; Lu, Song (accepted): Construction of perfectly continuous records of physical properties for dark-light sediment sequences collected from the Japan Sea during Integrated Ocean Drilling Program Expedition 346 and their potential utilities as paleoceanographic studies. Progress in Earth and Planetary Science, 5(1), https://doi.org/10.1186/s40645-018-0176-7; Itaki, Takuya; Sagawa, T; Kubota, Yoshimi (2018): Data report: Pleistocene radiolarian biostratigraphy, IODP Expedition 346 Site U1427. In: Proceedings of the IODP, Integrated Ocean Drilling Program, https://doi.org/10.2204/iodp.proc.346.202.2018; Katz, Amitai (1973): The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37(6), 1563-1586, https://doi.org/10.1016/0016-7037(73)90091-4; Lamb, J L; Miller, T H (1984): Stratigraphic significance of Uvigerninid foraminifers in the western hemisphere. Exxon Company, USA: Harold Norman Fisk Memorial Papers, 66; Lear, Caroline H; Rosenthal, Yair; Slowey, Niall C (2002): Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochimica et Cosmochimica Acta, 66(19), 3375-3387, https://doi.org/10.1016/S0016-7037(02)00941-9; Lewis, E; Wallace, Douglas WR (1998): Program Developed for CO2 System Calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, http://cdiac.ornl.gov/oceans/co2rprt.html; Marchitto, Thomas M; Bryan, Sean P; Curry, William B; McCorkle, Daniel C (2007): Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma. Paleoceanography, 22(1), PA1203, https://doi.org/10.1029/2006PA001287; Martin, Pamela A; Lea, David W (2002): A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophysics, Geosystems, 3(10), 1-8, https://doi.org/10.1029/2001GC000280; Mawbey, Elaine M; Hendry, Katharine R; Greaves, Mervyn; Hillenbrand, Claus-Dieter; Kuhn, Gerhard; Spencer-Jones, Charlotte L; McClymont, Erin L; Vadman, Kara J; Shevenell, Amelia E; Jernas, Patrycja E; Smith, James A (2020): Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf. Geochimica et Cosmochimica Acta, 283, 54-66, https://doi.org/10.1016/j.gca.2020.05.027; Nomaki, Hidetaka; Heinz, Petra; Nakatsuka, Takeshi; Shimanaga, Motohiro; Kitazato, Hiroshi (2005): Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: In situ tracer experiments. Limnology and Oceanography, 50(1), 134-146, https://doi.org/10.4319/lo.2005.50.1.0134; Ohga, T; Kitazato, Hiroshi (1997): Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan). Terra Nova, 9(1), 33-37, https://doi.org/10.1046/j.1365-3121.1997.d01-6.x; Oomori, Tamotsu; Kaneshima, Hiroshi; Maezato, Yoko; Kitano, Yasushi (1987): Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C. Marine Chemistry, 20(4), 327-336, https://doi.org/10.1016/0304-4203(87)90066-1; Pearson, Paul N; Burgess, Catherine E (2008): Foraminifer test preservation and diagenesis: comparison of high latitude Eocene sites. Geological Society, London, Special Publications, 303(1), 59-72, https://doi.org/10.1144/SP303.5; Pearson, Paul N; Ditchfield, Peter W; Singano, Joyce; Harcourt-Brown, Katherine G; Nicholas, Christopher J; Olsson, Richard K; Shackleton, Nicholas J; Hall, Mike A (2001): Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(6855), 481-487, https://doi.org/10.1038/35097000; Pearson, Paul N; Evans, Sam L; Evans, James (2015): Effect of diagenetic recrystallization on the strength of planktonic foraminifer tests under compression. Journal of Micropalaeontology, 34(1), 59-64, https://doi.org/10.1144/jmpaleo2013-032; Rathburn, Anthony E; De Deckker, Patrick (1997): Magnesium and strontium compositions of Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay, Antarctica. Marine Micropaleontology, 32(3-4), 231-248, https://doi.org/10.1016/S0377-8398(97)00028-5; Rohling, Eelco J; Foster, Gavin L; Grant, Katharine M; Marino, Gianluca; Roberts, Andrew P; Tamisiea, M E; William, F (2014): Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508(7497), 477-482, https://doi.org/10.1038/nature13230; Rosenthal, Yair; Boyle, Edward A (1993): Factors controlling the fluoride content of planktonic foraminifers: An evaluation of its paleoceanographic applicability. Geochimica et Cosmochimica Acta, 57, 335-346; Rosenthal, Yair; Boyle, Edward A; Slowey, Niall C (1997): Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta, 61(17), 3633-3643, https://doi.org/10.1016/S0016-7037(97)00181-6; Sagawa, T; Ikehara, K; Irino, T; Nakagawa, T; Takahashi, S; Matsuzaki, K; Suzuki, Y; Kozaka, Y; Lu, S; Tada, T; Holburn, A; Henderson, A; Huang, H-H (2015): Cruise report of R/V Kairei, KR15-10, precise chronology for the late Pleistocene Japan Sea sediments and its application to paleoceanography off Wakasa Bay. Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 58 p; Sagawa, Takuya; Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Holbourn, Ann E; Itaki, Takuya; Gallagher, Stephen John; Saavedra-Pellitero, Mariem; Ikehara, Ken; Irino, Tomohisa; Tada, Ryuji (accepted): Integrated tephrostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon. Progress in Earth and Planetary Science, 5(1), https://doi.org/10.1186/s40645-018-0168-7; Sexton, Philip F; Wilson, Paul A (2009): Preservation of benthic foraminifera and reliability of deep-sea temperature records: Importance of sedimentation rates, lithology, and the need to examine test wall structure. Paleoceanography, 24(2), PA2208, https://doi.org/10.1029/2008PA001650; Sexton, Philip F; Wilson, Paul A; Pearson, Paul N (2006): Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty”. Geochemistry, Geophysics, Geosystems, 7(12), https://doi.org/10.1029/2006GC001291; Shackleton, Nicholas J (1974): Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. In: Labeyrie, L. (ed.) Les méthodes quantitatives d'etude des variation du climat au cours du Pléistocène. Colloques Internationaux du C.N.R.S (Centre Nationale de la Recherche Scientifique), 219, 203–209, hdl:10013/epic.41396.d001; Skinner, Luke C; Menviel, Laurie; Broadfield, Lauren; Gottschalk, Julia; Greaves, Mervyn (2020): Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4. Communications Earth & Environment, 1(1), https://doi.org/10.1038/s43247-020-00024-3; Tachikawa, Kazuyo; Elderfield, Henry (2002): Microhabitat effects on Cd/Ca and δ 13 C of benthic foraminifera. Earth and Planetary Science Letters, 202(3-4), 607-624, https://doi.org/10.1016/S0012-821X(02)00796-3; Tada, Ryuji; Murray, Richard W; Zarikian, Carlos Alvarez; Anderson, William T; Bassetti, Maria Angela; Brace, B J; Clemens, Steven C; da Costa Gurgel, M H; Dickens, Gerald Roy; Dunlea, Ann G; Gallagher, Stephen John; Giosan, Liviu; Henderson, Andrew C G H; Holbourn, Ann E; Ikehara, K; Irino, Tomohisa; Itaki, Takuya; Karasuda, A; Kinsley, C W; Kubota, Yoshimi; Lee, G S; Lee, Kyung Eun; Lofi, Johanna; Lopes, C I C D; Peterson, Laura C; Saavedra-Pellitero, Mariem; Sagawa, T; Singh, Raj K; Sugisaki, Saiko; Toucanne, Samuel; Wan, S; Xuan, Chuang; Zheng, H; Ziegler, Martin (accepted): Site U1427. In: Proceedings of the IODP, Integrated Ocean Drilling Program, https://doi.org/10.2204/iodp.proc.346.108.2015; Voigt, Janett; Hathorne, Ed C; Frank, Martin; Holbourn, Ann E (2016): Minimal influence of recrystallization on middle Miocene benthic foraminiferal stable isotope stratigraphy in the eastern equatorial Pacific. Paleoceanography, 31(1), 98-114, https://doi.org/10.1002/2015PA002822; Wilson, Paul A; Norris, Richard D; Cooper, Matthew J (2002): Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30(7), 607-610, https://doi.org/10.1130/0091-7613(2002)030%3C0607:TTCGHU%3E2.0.CO;2; Wilson, Paul A; Opdyke, Bradley N (1996): Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24(6), 555-558, https://doi.org/10.1130/0091-7613(1996)024%3C0555:ESSTFT%3E2.3.CO;2; Yu, Jimin; Elderfield, Henry (2008): Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth and Planetary Science Letters, 276(1-2), 129-139, https://doi.org/10.1016/j.epsl.2008.09.015; README file for detailed method description used in Felder et al., 2021 (URI: https://download.pangaea.de/reference/109452/attachments/ReadMe_Felder_etal-2021.pdf); https://doi.pangaea.de/10.1594/PANGAEA.931916; https://doi.org/10.1594/PANGAEA.931916

19

File Description: text/tab-separated-values, 574 data points

Relation: https://doi.org/10.1594/PANGAEA.913906; Bickert, Torsten; Berger, Wolfgang H; Burke, S; Schmidt, Heike; Wefer, Gerold (1993): Late Quaternary stable isotope record of benthic foraminifers: Site 805 and 806, Ontong Java Plateau. In: Berger, WH; Kroenke, LW; Mayer, LA; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 130, 411-420, https://doi.org/10.2973/odp.proc.sr.130.025.1993; Lear, Caroline H; Rosenthal, Yair; Wright, James D (2003): The closing of a seaway: ocean water masses and global climate change. Earth and Planetary Science Letters, 210(3-4), 425-436, https://doi.org/10.1016/S0012-821X(03)00164-X; https://doi.pangaea.de/10.1594/PANGAEA.913903; https://doi.org/10.1594/PANGAEA.913903