Showing 1 - 20 results of 395 for search 'HOST-parasite relationships' Narrow Search
3
Dissertation/ Thesis

Authors: Kiju, Pragya

Contributors: Chairperson, Graduate Committee: Michael A. Ivie and Kevin Wanner (co-chair), This is a manuscript style paper that includes co-authored chapters.

Subject Geographic: Montana

File Description: application/pdf

4
Dissertation/ Thesis

Contributors: Ramirez Hernandez, Maria Helena, Libbiq Un

File Description: 128 páginas; application/pdf

Relation: RedCol; LaReferencia; I. Mesquita et al., “Exploring NAD+ metabolism in host-pathogen interactions,” Cell. Mol. Life Sci., vol. 73, no. 6, pp. 1225–1236, 2016, doi:10.1007/s00018-015-2119-4.; C. Cantó, K. J. Menzies, and J. Auwerx, “NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus,” Cell Metab., vol. 22, no. 1, pp. 31–53, 2015, doi:10.1016/j.cmet.2015.05.023.; WHO (World Health Organization), “Vector-borne diseases,” 2017.; N. Forero-Baena, D. Sánchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramírez-Hernández, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),” Biochim. Open, vol. 1, pp. 61–69, 2015, doi:10.1016/j.biopen.2015.11.001; C. H. Niño, N. Forero-Baena, L. E. Contreras, D. Sánchez-Lancheros, K. Figarella, and M. H. Ramírez, “Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi,” Mem. Inst. Oswaldo Cruz, vol. 110, no. 7, pp. 890–897, 2015, doi:10.1590/0074-02760150175.; L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, Nov. 2015, doi:10.1016/j.pep.2015.08.022.; L. Rajman, K. Chwalek, and D. A. Sinclair, “Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence,” Cell Metab., vol. 27, no. 3, pp. 529–547, 2018, doi:10.1016/j.cmet.2018.02.011.; S. ichiro Imai and L. Guarente, “NAD+ and sirtuins in aging and disease,” Trends Cell Biol., vol. 24, no. 8, pp. 464–471, 2014, doi:10.1016/j.tcb.2014.04.002.; S. A. Trammell and C. Brenner, “Targeted, Lcms-Based Metabolomics for Quantitative Measurement of Nad + Metabolites,” Comput. Struct. Biotechnol. J., vol. 4, no. 5, p. e201301012, 2013, doi:10.5936/csbj.201301012.; T. G. Demarest et al., “Assessment of NAD + metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle,” Anal. Biochem., vol. 572, no. February, pp. 1–8, 2019, doi:10.1016/j.ab.2019.02.019.; K. Yaku, K. Okabe, and T. Nakagawa, “NAD metabolism: Implications in aging and longevity,” Ageing Res. Rev., vol. 47, no. May, pp. 1–17, 2018, doi:10.1016/j.arr.2018.05.006.; S. ichiro Imai and S. Johnson, “NAD+ biosynthesis, aging, and disease,” F1000Research, vol. 7, no. 0, pp. 1–10, 2018, doi:10.12688/f1000research.12120.1.; E. F. Fang et al., “NAD+ in Aging: Molecular Mechanisms and Translational Implications,” Trends Mol. Med., vol. 23, no. 10, pp. 899–916, 2017, doi:10.1016/j.molmed.2017.08.001.; G. Noctor, J. Hager, and S. Li, Biosynthesis of NAD and its manipulation in plants, 1st ed., vol. 58. Elsevier Ltd., 2011.; Y.; Yang and S. Anthony, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Dtsch. Krankenpflegez., vol. 44, no. 7, pp. 492–494, 2016, doi:10.1016/j.bbapap.2016.06.014.NAD.; C. Lau, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. Volume, no. 14, p. 410, 2009, doi:10.2741/3252.; I. Hanukoglu, “Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites,” Biochem. Mol. Biol. Educ., vol. 43, no. 3, pp. 206–209, 2015, doi:10.1002/bmb.20849.; S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 281, no. 3, pp. 1524–1531, 2006, doi:10.1074/jbc.M510425200.; F. Palmieri et al., “Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins,” J. Biol. Chem., vol. 284, no. 45, pp. 31249–31259, 2009, doi:10.1074/jbc.M109.041830.; N. Linka et al., “Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes,” Gene, vol. 306, no. 1–2, pp. 27–35, 2003, doi:10.1016/S0378-1119(03)00429-3.; F. Palmieri, C. L. Pierri, A. De Grassi, A. Nunes-Nesi, and A. R. Fernie, “Evolution, structure and function of mitochondrial carriers: A review with new insights,” Plant J., vol. 66, no. 1, pp. 161–181, 2011, doi:10.1111/j.1365-313X.2011.04516.x.; S. Saari, A. Näreaho, and S. Nikander, “Protozoa,” Canine Parasites Parasit. Dis., pp. 5–34, 2019, doi:10.1016/B978-0-12-814112-0.00002-7; A. Warren and G. F. Esteban, Protozoa, Fourth Edi. Elsevier, 2019.; C. Piña-Vázquez, M. Reyes-López, G. Ortíz-Estrada, M. de la Garza, and J. Serrano-Luna, “Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix,” J. Parasitol. Res., vol. 2012, pp. 1–24, 2012, doi:10.1155/2012/748206.; B. Van Der Pol, Trichomonas vaginalis, Fifth Edit. Elsevier Inc., 2018.; F. Mercer and P. J. Johnson, “Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses,” Trends Parasitol., vol. 34, no. 8, pp. 683–693, 2018, doi:10.1016/j.pt.2018.05.006.; H. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi:10.1016/S0969-2126(01)00693-1.; C. H. Niño Rivers, “Identificación y caracterización de la Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) en Trypanosoma cruzi: Enzima clave en el metabolismo del NAD+ . Carlos Hernando Niño Riveros,” 2014.; J. K. O’Hara et al., “Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum,” PLoS One, vol. 9, no. 4, 2014, doi:10.1371/journal.pone.0094061.; N. Forero-Baena, D. Sanchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramirez-Hernandez, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),”; L. Luo et al., “Regulation of mitochondrial NAD pool via NAD transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis,” 2019.; L. C. Villalobos Gonzalez, M. H. Ramirez, and A. Ayala Fajardo, “Estudio del metabolismo del NAD+ en protozoos de vida libre y parásitos,” 2018.; B. A. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Protein Identification and Analysis Tools on the ExPASy Server; Totowa, NJ: Humana Press, 2005.; Qiagen Digital Insights, “CLC Genomics Workbench.” 2021, [Online]. Available: http://www.clcbio.com/products/clc-genomics-workbench/.; J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, and O. Winther, “DeepLoc: prediction of protein subcellular localization using deep learning,” Bioinformatics, vol. 33, no. 21, pp. 3387–3395, Nov. 2017, doi:10.1093/bioinformatics/btx431.; K.-C. Chou and H.-B. Shen, “A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0,” PLoS One, vol. 5, no. 4, p. e9931, Apr. 2010, doi:10.1371/journal.pone.0009931.; W.-Z. Lin, J.-A. Fang, X. Xiao, and K.-C. Chou, “iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins,” Mol. Biosyst., vol. 9, no. 4, p. 634, 2013, doi:10.1039/c3mb25466f.; C. Zhang, P. L. Freddolino, and Y. Zhang, “COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information,” Nucleic Acids Res., vol. 45, no. W1, pp. W291–W299, Jul. 2017, doi:10.1093/nar/gkx366; L. Kiemer, J. D. Bendtsen, and N. Blom, “NetAcet: Prediction of N-terminal acetylation sites,” Bioinformatics, vol. 21, no. 7, pp. 1269–1270, 2005, doi:10.1093/bioinformatics/bti130.; N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.,” J. Mol. Biol., vol. 294, no. 5, pp. 1351–62, Dec. 1999, doi:10.1006/jmbi.1999.3310.; C. Wang et al., “GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins,” Genomics. Proteomics Bioinformatics, vol. 18, no. 1, pp. 72–80, Feb. 2020, doi:10.1016/j.gpb.2020.01.001.; J. Ren, L. Wen, X. Gao, C. Jin, Y. Xue, and X. Yao, “CSS-Palm 2.0: An updated software for palmitoylation sites prediction,” Protein Eng. Des. Sel., vol. 21, no. 11, pp. 639–644, 2008, doi:10.1093/protein/gzn039.; D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” J. Mol. Biol., vol. 292, pp. 195–202, 1999, doi:10.1006/jmbi.1999.3091.; D. Xu and Y. Zhang, “Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization,” Biophysj, vol. 101, no. 10, pp. 2525–2534, 2011, doi:10.1016/j.bpj.2011.10.024.; P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, Feb. 2011, doi:10.1093/bioinformatics/btq662.; F. T. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, “UCSF Chimera--a visualization system for exploratory research and analysis.” .; S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi:10.1093/nar/gkaa971.; M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, no. 1, p. 17, Dec. 2012, doi:10.1186/1758-2946-4-17.; J. Eberhardt, D. Santos-martins, A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” 2021, doi:10.1021/acs.jcim.1c00203.; A. C. Wallace, R. A. Laskowski, and J. M. Thornton, “LIGPLOT : a program to generate schematic diagrams of protein-ligand interactions Clean up structure,” vol. 8, no. 2, pp. 127–134, 1995.; A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. M. Leunissen, “Primer3Plus, an enhanced web interface to Primer3,” Nucleic Acids Res., vol. 35, no. Web Server, pp. W71–W74, May 2007, doi:10.1093/nar/gkm306.; Promega, “Pfu DNA Polymerase Product Information 9PIM774,” Promega, Corp., 2013.; Life Technologies (Invitrogen), “Champion pET SUMO Protein Expression System,” J. Chem. Inf. Model., vol. 5, no. January, pp. 1833–1839, 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15263846%0Ahttp://link.springer.com/10.1007/978-1-4939-7366-8.; PROMEGA, “pGEM(R)-T and pGEM(R)-T Easy Vector Systems Technical Manual TM042 - pgem-t and pgem-t easy vector systems protocol.pdf,” pGEM(R)-T pGEM(R)-T Easy Vector Syst. Tech. Man. TM042 - pgem-t pgem-t easy vector Syst. Protoc., 2010, [Online]. Available: https://www.promega.co.uk/~/media/files/resources/protocols/technical manuals/0/pgem-t and pgem-t easy vector systems protocol.pdf.; Insightful Science, “Software SnapGene.” 2021, [Online]. Available: https://www.snapgene.com/.; T. Sambrook, Joseph; Russell, David; Maniatis, Molecular Cloning. A laboratory manual, Thierth ed. 2001.; Invitrogen TM, “User Manual ChampionTM pET Directional TOPO® Expression Kits,” Invit. User Guid., no. 25, 2010.; P.-C. Yang, Z.-Q. Liu, and T. Mahmood, “Western blot: Technique, theory and trouble shooting,” N. Am. J. Med. Sci., vol. 6, no. 3, p. 160, 2014, doi:10.4103/1947-2714.128482.; Gold Bio, “Affinity His-Tag Purification,” no. 800, pp. 4–8, 2019, [Online]. Available: https://www.goldbio.com/documents/1013/Affinity His-Tag Purification Troubleshooting.pdf.; E. Balducci et al., “Assay Methods for Nicotinamide Mononucleotide Adenylyltransferase of Wide Applicability,” Anal. Biochem., vol. 228, no. 1, pp. 64–68, Jun. 1995, doi:10.1006/ABIO.1995.1315.; E. Balducci et al., “NMN adenylyltransferase from bull testis: Purification and properties,” Biochem. J., vol. 310, no. 2, pp. 395–400, 1995, doi:10.1042/bj3100395.; W. A. Amro, W. Al-Qaisi, and F. Al-Razem, “Production and purification of IgY antibodies from chicken egg yolk,” J. Genet. Eng. Biotechnol., vol. 16, no. 1, pp. 99–103, Jun. 2018, doi:10.1016/j.jgeb.2017.10.003.; W. E. Werner, “Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis,” Cereal Chem., vol. 72, no. 3, pp. 248–251, 1995.; A. Rath, F. Cunningham, and C. M. Deber, “Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 39, pp. 15668–15673, 2013, doi:10.1073/pnas.1311305110.; S. M. Simon, F. J. R. Sousa, R. Mohana-Borges, and G. C. Walker, “Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products,” Proc. Natl. Acad. Sci., vol. 105, no. 4, pp. 1152–1157, Jan. 2008, doi:10.1073/pnas.0706067105.; M. A. Ruggiero et al., “A higher level classification of all living organisms,” PLoS One, vol. 10, no. 4, pp. 1–60, 2015, doi:10.1371/journal.pone.0119248.; T. Knudsen, B. Knudsen, “CLC Main Workbench 8.1.2.” 2020.; I. Erb and C. Notredame, “How should we measure proportionality on relative gene expression data?,” Theory Biosci., vol. 135, no. 1–2, pp. 21–36, 2016, doi:10.1007/s12064-015-0220-8.; J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22, no. 22, pp. 4673–4680, 1994, doi:10.1093/nar/22.22.4673.; A. Marchler-Bauer et al., “CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures,” Nucleic Acids Res., vol. 45, no. D1, pp. D200–D203, 2017, doi:10.1093/nar/gkw1129.; J. Ma, J. Peng, S. Wang, and J. Xu, “A conditional neural fields model for protein threading,” Bioinformatics, vol. 28, no. 12, pp. 59–66, 2012, doi:10.1093/bioinformatics/bts213.; J. Ma, S. Wang, F. Zhao, and J. Xu, “Protein threading using context-specific alignment potential,” Bioinformatics, vol. 29, no. 13, pp. 257–265, 2013, doi:10.1093/bioinformatics/btt210; S. M. Cacciò, M. Lalle, and S. G. Svärd, “Host specificity in the Giardia duodenalis species complex,” Infect. Genet. Evol., vol. 66, no. October 2017, pp. 335–345, 2018, doi:10.1016/j.meegid.2017.12.001.; A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey, “DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,” Bioinformatics, vol. 28, no. 15, pp. 2074–2075, Aug. 2012, doi:10.1093/bioinformatics/bts310.; S. E. Wang, A. S. Amir, T. Nguyen, A. M. Poole, and A. Simoes-Barbosa, “Spliceosomal introns in Trichomonas vaginalis revisited,” Parasit. Vectors, vol. 11, no. 1, p. 607, Dec. 2018, doi:10.1186/s13071-018-3196-7.; J. M. Carlton et al., “Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis,” Science (80-. )., vol. 315, no. 5809, pp. 207–212, Jan. 2007, doi:10.1126/science.1132894.; C. Lau, C. Dölle, T. I. Gossmann, L. Agledal, M. Niere, and M. Ziegler, “Isoform-specific Targeting and Interaction Domains in Human Nicotinamide Mononucleotide Adenylyltransferases,” J. Biol. Chem., vol. 285, no. 24, pp. 18868–18876, Jun. 2010, doi:10.1074/jbc.M110.107631.; K. Fujiwara, H. Toda, and M. Ikeguchi, “Dependence of α -helical and β -sheet amino acid propensities on the overall protein fold type,” pp. 6–15, 2012.; F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, Oct. 2005, doi:10.1074/jbc.M508660200.; T. Croft, C. J. T. Raj, M. Salemi, B. S. Phinney, and S. J. Lin, “A functional link between NAD+ homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 293, no. 8, pp. 2927–2938, 2018, doi:10.1074/jbc.M117.807214.; D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von Heijne,” J. Mol. Biol., vol. 292, no. 2, pp. 195–202, Sep. 1999, doi:10.1006/jmbi.1999.3091.; I. Hanukoglu, “Rossmann Fold : A Beta-Alpha- Beta Fold at Dinucleotide Binding Sites,” pp. 206–209, 2014, doi:10.1002/bmb.20849.; R. J. Anderson, Z. Weng, R. K. Campbell, and X. Jiang, “Main-Chain Conformational Tendencies of Amino Acids,” vol. 689, no. March, pp. 679–689, 2005, doi:10.1002/prot.20530.; V. Saridakis, D. Christendat, M. S. Kimber, A. Dharamsi, A. M. Edwards, and E. F. Pai, “Insights into Ligand Binding and Catalysis of a Central Step in NAD ؉ Synthesis,” vol. 276, no. 10, pp. 7225–7232, 2001, doi:10.1074/jbc.M008810200.; X. Zhang, O. V Kurnasov, S. Karthikeyan, N. V Grishin, A. L. Osterman, and H. Zhang, “Structural Characterization of a Human Cytosolic NMN / NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis * □,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi:10.1074/jbc.M300073200.; J. Hon et al., “SoluProt: prediction of soluble protein expression in Escherichia coli,” Bioinformatics, vol. 37, no. 1, pp. 23–28, Apr. 2021, doi:10.1093/bioinformatics/btaa1102.; C. A. Nieto Clavijo, N. Forero Baena, and M. H. Ramírez Hernández, “Diseño y producción de diversas proteínas fusión de la nicotinamida/nicotinato mononucleótido adenilil transferasa (NMNAT) de Plasmodium falciparum,” Rev. Colomb. Química, vol. 46, no. 3, pp. 5–10, Sep. 2017, doi:10.15446/rev.colomb.quim.v46n3.63492.; M. Fakruddin, R. Mohammad Mazumdar, K. S. Bin Mannan, A. Chowdhury, and M. N. Hossain, “ Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli ,” ISRN Biotechnol., vol. 2013, no. 3, pp. 1–7, 2013, doi:10.5402/2013/590587.; T. Panavas, C. Sanders, and T. R. Butt, “SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems,” vol. 497, no. 6, pp. 303–317, 2009, doi:10.1007/978-1-59745-566-4.; H. Saitoh, J. Uwada, and A. Kawasaki, “Strategies for the Expression of SUMO-Modified Target Proteins in Escherichia coli,” vol. 497, pp. 211–221, 2009, doi:10.1007/978-1-59745-566-4.; J. A. Bornhorst and J. J. Falke, “Purification of proteins using polyhistidine affinity tags,” 2000, pp. 245–254.; G. Orsomando et al., “Simultaneous Single-Sample Determination of NMNAT Isozyme Activities in Mouse Tissues,” PLoS One, vol. 7, no. 12, p. e53271, Dec. 2012, doi:10.1371/journal.pone.0053271.; M. Kato and S. J. Lin, “YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 289, no. 22, pp. 15577–15587, 2014, doi:10.1074/jbc.M114.558643.; W. Konigsberg, “Reduction of Disulfide Bonds in Proteins with Dithiothreitol,” Methods Enzymol., vol. 25, no. C, pp. 185–188, 1972, doi:10.1016/S0076-6879(72)25015-7.; M. C. Alliegro, “Effects of dithiothreitol on protein activity unrelated to thiol- disulfide exchange: For consideration in the analysis of protein function with cleland’s reagent,” Anal. Biochem., vol. 282, no. 1, pp. 102–106, 2000, doi:10.1006/abio.2000.4557.; N. Raffaelli, L. Sorci, A. Amici, M. Emanuelli, F. Mazzola, and G. Magni, “Identification of a novel human nicotinamide mononucleotide adenylyltransferase,” Biochem. Biophys. Res. Commun., vol. 297, no. 4, pp. 835–840, 2002, doi:10.1016/S0006-291X(02)02285-4.; L. E. Contreras Rodríguez, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, p. e03733, Apr. 2020, doi:10.1016/j.heliyon.2020.e03733.; J. Rodrigues, J. Caldeira, and B. Vaidya, “A Novel Intra-body Sensor for Vaginal Temperature Monitoring,” Sensors, vol. 9, no. 4, pp. 2797–2808, Apr. 2009, doi:10.3390/s90402797.; G. Johnson and M. H. Trussell, “Physiology of Bacteria-free Trichomonas vaginalis. VII: Temperature in Relation to Survival and Generation Time.,” Exp. Biol. Med., vol. 57, no. 2, pp. 252–254, Nov. 1944, doi:10.3181/00379727-57-14771.; S. M. Gelbart, J. L. Thomason, P. J. Osypowski, A. V Kellett, J. A. James, and F. F. Broekhuizen, “Growth of Trichomonas vaginalis in commercial culture media,” J. Clin. Microbiol., vol. 28, no. 5, pp. 962–964, May 1990, doi:10.1128/jcm.28.5.962-964.1990.; A. Chang et al., “BRENDA, the ELIXIR core data resource in 2021: new developments and updates,” Nucleic Acids Res., vol. 49, no. D1, pp. D498–D508, Jan. 2021, doi:10.1093/nar/gkaa1025.; J. J. Babcock and L. Brancaleon, “International Journal of Biological Macromolecules Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength,” Int. J. Biol. Macromol., vol. 53, pp. 42–53, 2013, doi:10.1016/j.ijbiomac.2012.10.030.; R. Dro, “Lysozyme Oligomers as a Molecular Mass Standard for Sodium Dodecyl Gel Electrophoresis,” vol. 422, pp. 419–422, 1988.; R. Li, Z. Wu, Y. Wangb, L. Ding, and Y. Wang, “Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin,” Biotechnol. Reports, vol. 9, pp. 46–52, 2016, doi:10.1016/j.btre.2016.01.002.; G. V Barnett, M. Drenski, V. Razinkov, W. F. Reed, and C. J. Roberts, Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering, vol. 511. 2017.; C. Seok, M. Baek, M. Steinegger, H. Park, G. R. Lee, and J. Won, “Accurate protein structure prediction: what comes next?,” BIODESIGN, vol. 9, no. 3, pp. 47–50, Sep. 2021, doi:10.34184/kssb.2021.9.3.47.; K. Hashimoto and A. R. Panchenko, “Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states,” Proc. Natl. Acad. Sci., vol. 107, no. 47, pp. 20352–20357, Nov. 2010, doi:10.1073/pnas.1012999107.; J. M. Brazill, C. Li, Y. Zhu, and R. G. Zhai, “NMNAT: It’s an NAD + synthase… It’s a chaperone… It’s a neuroprotector,” Curr. Opin. Genet. Dev., vol. 44, pp. 156–162, Jun. 2017, doi:10.1016/j.gde.2017.03.014.; L. Skipper, “PROTEINS %7C Overview,” vol. 8, p. 101983, 2005.; W.-W. Zhang, “The use of gene-specific IgY antibodies for drug target discovery,” Drug Discov. Today, vol. 8, no. 8, pp. 364–371, Apr. 2003, doi:10.1016/S1359-6446(03)02655-2.; Y. Xu et al., “Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review,” Biotechnol. Adv., vol. 29, no. 6, pp. 860–868, Nov. 2011, doi:10.1016/j.biotechadv.2011.07.003.; D. Thirumalai, S. Visaga Ambi, R. S. Vieira-Pires, Z. Xiaoying, S. Sekaran, and U. Krishnan, “Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections – A review,” Int. J. Biol. Macromol., vol. 136, pp. 755–763, Sep. 2019, doi:10.1016/j.ijbiomac.2019.06.118.; E. P. V Pereira, M. F. Van Tilburg, E. O. P. T. Florean, and M. I. F. Guedes, “Egg yolk antibodies ( IgY ) and their applications in human and veterinary health : A review,” no. January, 2020.; Barella, “Chicken egg yolk antibodies (IgY) as an alternative to mammalian antibodies.,” بیماریهای داخلی, vol. 3, no. 4, p. 210, 2010, doi:10.17485/ijst/2010/v3i4/29741.; D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation,” J. Vis. Exp., no. 51, May 2011, doi:10.3791/3084.; D. M. Ostos Peña, “Aproximación a la regulación de algunas enzimas involucradas en el metábolismo del NAD+ en Giardia duodenalis.” pp. 1–128, 2019.; G. Garzón, “Estudio de un candidato a NAD quinasa en Leishmania spp,” Adv. Opt. Mater., vol. 10, no. 1, pp. 1–9, 2018.; S. E. Villamil-Silva, L. J. Ortiz-Joya, L. E. Contreras-Rodríguez, G. J. Díaz- Gonzalez, and M. H. Ramírez-Hernández, “Identificación de una triparedoxina peroxidasa citoplasmática en Leishmania braziliensis,” Rev. Colomb. Química, vol. 50, no. 2, pp. 3–14, Aug. 2021, doi:10.15446/rev.colomb.quim.v50n2.91721; M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic Acids Res., vol. 45, no. W1, pp. W24–W29, Jul. 2017, doi:10.1093/nar/gkx346.; D. S. Morales, L. E. Contreras, C. C. Rubiano, and M. H. R. Hern, “Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis ( Lb NDT1 ),” Helyion, vol. 6, no. June, pp. 0–9, 2020, doi:10.1016/j.heliyon.2020.e04331.; V. S. Sharon Eliana, “Exploración de un transportador de NAD + y sus precursores en Leishmania.,” pp. 1–181, 2021.; J. J. Ruprecht et al., “The Molecular Mechanism of Transport by the Article The Molecular Mechanism of Transport by the Mitochondrial ADP / ATP Carrier,” pp. 435–447, 2019, doi:10.1016/j.cell.2018.11.025.; A. Shiflett and P. Johnson, “Mitochondrion-related Organelles in Parasitic Eukaryotes,” no. 8, pp. 409–429, 2011, doi:10.1146/annurev.micro.62.081307.162826.Mitochondrion-related.; T. Lithgow, “Evolution of macromolecular import pathways in mitochondria , hydrogenosomes and mitosomes,” pp. 799–817, 2010, doi:10.1098/rstb.2009.0167.; M. S. King, M. Kerr, P. G. Crichton, R. Springett, and E. R. S. Kunji, “Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier,” Biochim. Biophys. Acta - Bioenerg., vol. 1857, no. 1, pp. 14–22, 2016, doi:10.1016/J.BBABIO.2015.09.013.; R. E. Schneider et al., “The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes,” Int. J. Parasitol., vol. 41, no. 13–14, pp. 1421–1434, 2011, doi:10.1016/j.ijpara.2011.10.001.; S. D. Dyall et al., “Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex,” vol. 28, pp. 1103–1107, 2004, doi:10.1038/nature02918.1.; J. Kuan and M. H. Saier, “The Mitochondrial Carrier Family of Transport Proteins : Structural , Functional , and Evolutionary Relationships,” vol. 28, no. 3, pp. 209–233, 1993.; A. G. B. Simpson and Y. Eglit, “Protist Diversification,” Encycl. Evol. Biol., vol. 3, pp. 344–360, 2016, doi:10.1016/B978-0-12-800049-6.00247-X.; https://repositorio.unal.edu.co/handle/unal/82074; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

6
Dissertation/ Thesis

Contributors: Biologie moléculaire et immunologie parasitaires et fongiques (BIPAR), École nationale vétérinaire - Alfort (ENVA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Normandie, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Corinne Cotinot

Superior Title: https://anses.hal.science/tel-04142821 ; Life Sciences [q-bio]. 2021.

9
Dissertation/ Thesis

Contributors: Chairperson, Graduate Committee: Jovanka Voyich-Kane, Ranjan K. Behera, Kyler B. Pallister, Tyler J. Evans, Owen Burroughs, Caralyn Flack, Fermin E. Guerra, Willis Pullman, Brock Cone, Jennifer G. Dankoff, Tyler K. Nygaard, Shaun R. Brinsmade and Jovanka M. Voyich were co-authors of the article, 'The accessory gene saeP of the saeR/S two-component gene regulatory system impacts Staphylococcus aureus virulence during neutrophil interaction' in the journal 'Frontiers in microbiology' which is contained within this dissertation., Kyler Pallister and Jovanka M. Voyich were co-authors of the article, 'Differential analysis of host/pathogen RNA expression via next generation sequencing reveals Staphylococcus aureus utilizes saeR/S-mediated factors to inhibit human neutrophil functions following phagocytosis' which is contained within this dissertation.

File Description: application/pdf

10
Dissertation/ Thesis

Contributors: Chairperson, Graduate Committee: David K. Weaver, Gadi V. P. Reddy, Jamie D. Sherman, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Antixenosis, antibiosis, and potential yield compensatory responses in barley cultivars exposed to wheat stem sawfly under field conditions' which is contained within this dissertation., Gadi V. P. Reddy, Jamie D. Sherman, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Effect of precipitation and temperature on larval survival of Cephus cinctus (Hymenoptera: Cephidae) in barley cultivars' which is contained within this dissertation., Robert K. D. Peterson, Jamie D. Sherman, Gadi V. P. Reddy and David K. Weaver were co-authors of the article, 'Multiple decrement life tables of Cephus cinctus Norton (Hymenoptera: Cephidae) across a set of barley cultivars: the importance of plant defense versus cannibalism' which is contained within this dissertation., Gadi V. P. Reddy, Megan L. Hofland, Robert K. D. Peterson, Jamie D. Sherman and David K. Weaver were co-authors of the article, 'Host selection and oviposition behaviors of Cephus cinctus (Hymenoptera: Cephidae) in barley' which is contained within this dissertation.

Subject Geographic: Montana

File Description: application/pdf

12
Dissertation/ Thesis

Contributors: Cury, Márcia Cristina, http://lattes.cnpq.br/6786546501593108, Melo, Celine de, http://lattes.cnpq.br/8911760160895924, Pascoli, Graziela Virginia Tolesano, http://lattes.cnpq.br/0448470320601533, Cunha, Maria Júlia Rodrigues da, http://lattes.cnpq.br/6532068761824354

File Description: application/pdf

Relation: RIBEIRO, Paulo Vitor Alves. Perfil leucocitário e hemoparasitos de Antilophia galeata (Passeriformes: Pipridae) em um fragmento florestal de Cerrado. 2018. 91f. Dissertação (Mestrado em Ecologia e Conservação de Recursos Naturais) - Universidade Federal de Uberlândia, Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.226; https://repositorio.ufu.br/handle/123456789/21538; http://dx.doi.org/10.14393/ufu.di.2018.226

18
Dissertation/ Thesis

Authors: Ahonen, Hanna

File Description: 1 verkkoaineisto (60 sivua) : kuvitettu, karttoja; application/pdf

Relation: Jyväskylä studies in biological and environmental science; Yhteenveto-osa ja 4 eripainosta julkaistu myös painettuna.; 332; oai:jykdok.linneanet.fi:1703011; URN:ISBN:978-951-39-7109-0; http://urn.fi/URN:ISBN:978-951-39-7109-0