Showing 1 - 20 results of 829 for search 'Analysis of variance' Narrow Search
8
Dissertation/ Thesis

Contributors: Okkan, Umut, Fen Bilimleri Enstitüsü

File Description: application/pdf

Relation: 121Y037; Tez; Noori, Ahmad Tamim. Hazne işletme optimizasyonu için parametrik bir simülasyon modelinin geliştirilmesi. Yayınlanmamış yüksek lisans tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2023.; https://hdl.handle.net/20.500.12462/12902

10
Dissertation/ Thesis

Contributors: Parise, Maria Regina, Martins, Claudio Rodrigues, Behainne, Jhon Jairo Ramirez, Watanabe, Erica Roberta Lovo da Rocha, Lenzi, Giane Gonçalvez

File Description: application/pdf

Relation: BRASIL, Otávio Augusto Machado. Análise estatística dos parâmetros de um moinho classificador de impacto na determinação de granulometria de tinta em pó. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Química) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.; http://repositorio.utfpr.edu.br/jspui/handle/1/29816

15
Dissertation/ Thesis

Contributors: Velásquez Henao, Juan David, Big Data y Data Analytics

Subject Geographic: Colombia

File Description: 65 páginas; application/pdf

Relation: RedCol; LaReferencia; Aguilar, S. (2010). Red neuronal artificial con heterocedasticidad condicional. . Rionegro: Universidad Católica de Oriente.; Amazon Web Services. (12 de 12 de 2022). https://docs.aws.amazon.com/. Obtenido de https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html; Ante, L. (2022). How Elon Musk's Twitter activity moves cryptocurrency markets. Blockchain Research Lab.; Assaf, O., Di Fatta, G., & Nicosia, G. (2022). Multivariate LSTM for Stock Market Volatility Prediction.; Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (s.f.).; Black, F., & Litterman, R. (1991). Asset Allocation. The Journal of Fixed Income, 1(2), 7– 18.; Carmona, N. (2022). Redes neuronales regularizadas para la predicción de la inflación Colombiana. Tesis de Maestría en Ingeniería - Analítica. Medellín: Universidad Nacional de Colombia. Facultad de Minas. Área Curricular de Sistemas e Informática.; Carr, P., Wu, L., & Zhang, Z. (2020). Using Machine Learning to Predict Rrealized Variance. Nueva York: University of New York. Department of Finance and Risk Engineering.; Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. University of Washington.; Christensen, K., Siggaard, M., & Veliyev, B. (2021). A machine learning approach to volatility forecasting. Aarhus: Aarhus University. Department of Economics and Business Economics.; Echeverri, L. (2021). Conformación Automática de Portafolios de Inversión Usando Analítica Financiera. Tesis de Maestría en Ingeniería - Analítica. Medellín: Universidad Nacional de Colombia. Facultad de Minas. Área Curricular de Sistemas e Informática.; Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance.; Gandini, G. (14 de 01 de 2020). 2019, el año del Colcap. Semana.; Hutter, F., H. Hoos, H., & Leyton-Brown, K. (2011). Sequential Model-Based Optimization for General Algorithm Configuration. University of British Columbia.; I. Frazier, P. (2018). A Tutorial on Bayesian Optimization.; Liu, Y. (2019). Novel volatility forecasting using deep learning–Long Short Term.; Markowitz, H. (1959). Portafolio Selection. Journal Finance, 7(1), 77–91.; Mercado accionario. (22 de 12 de 2022).; Merton, R. C. (1971). Optimum Consumption and Portfolio Rules in a Continuous-Time Model. Journal of Economic Theory.; Sharpe, W. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, 19(3), 425.; TSAY, R. S. (2001). Analysis of Financial Time Series. Wiley.; Velásquez, J. D., Gutiérrez, S., & Franco, C. J. (2013). USING A DYNAMIC ARTIFICIAL NEURAL NETWORK FOR FORECASTING THE VOLATILITY OF A FINANCIAL TIME SERIES.; Villada, F., Muñoz, N., & Garcia, E. (2012). Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores. Medellín: Universidad de Antioquia. Facultad de Ingeniería. Departamento de Ingenieria Eléctrica.; https://repositorio.unal.edu.co/handle/unal/84036; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

16
Dissertation/ Thesis

Contributors: Lamprea Rodríguez, Marisol

File Description: vii, 66 páginas; application/pdf

Relation: Bireme; Adolphs, R. (2018). Emotions are functional states that cause feelings and behavior. En A. S. Fox, R. C. Lapate, A. J. Shackman & R. J. Davidson (Eds.), The nature of emotion: fundamental questions. Oxford University Press.; Arias, S., & Martínez-Salazar, I. (2022). The COVID-19 HEalth caRe wOrkErs Study (HEROES) INFORME REGIONAL DE LAS AMÉRICAS.; Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. En Psychology of learning and motivation (pp. 89-195).; Baddeley, A. (2010). Working memory. Current biology, 20(4), 136-140., doi:10.1146/annurev.psych.58.110405.085709; Baddeley, A. (2013). Working memory and emotion: Ruminations on a theory of depression. Review of General Psychology, 17(1), 20-27., https/doi:10.1146/annurev.psych.58.110405.085709; Baddeley, A., & Hitch, G. (1974). Working memory. En Psychology of learning and motivation 47-89.; Banks, W. P. (1970). Signal detection theory and human memory. Psychological bulletin, 74(2), 81.; Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual review of psychology, 58, 373. https://doi:10.1146/annurev.psych.58.110405.085709; Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of general psychology, 5(4), 323-370. https://doi.org/10.1037/1089-2680.5.4.323; Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck depression inventory–II. Psychological assessment.; Beck, A. T., Steer, R. A., Brown, G. K., et al. (1987). Beck depression inventory. Harcourt Brace Jovanovich New York.; Borod, J. C., Andelman, F., Obler, L. K., Tweedy, J. R., & Wilkowitz, J. (1992). Right hemisphere specialization for the identification of emotional words and sentences: Evidence from stroke patients. Neuropsychologia, 30(9), 827-844. https://doi.org/10.1016/0028-3932(92)90086-2.; Borod, J. C., Cicero, B. A., Obler, L. K., Welkowitz, J., Erhan, H. M., Santschi, C., Grunwald, I. S., Agosti, R. M., & Whalen, J. R. (1998). Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology, 12(3), 446. https://doi.org/10.1037/0894-4105.12.3.446.; Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49-59. https://doi.org/10.1016/0005-7916(94)90063-9.; Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings (Vol. 30, No. 1, pp 25-36). Technical report C-1, the center for research in psychophysiology, University of Florida; Clavijo, M., & Cantor, L. (2020). Adaptación y validación de la Escala de Afectividad Positiva y Negativa (PANAS) al contexto colombiano, en una muestra de madres solteras en la ciudad de (Tesis de maestría). Fundación Universitaria Los Libertadores.; Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT press, 2014.; Cowan, N. (1999). An embedded-processes model of working memory.; Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169, 323-338. https://doi.org/10.1016/S0079-6123(07)00020-9; Davidson, R. J. (1996). Cerebral Asymmetry, Emotion, and Affective Style. Brain asymmetry, 361.; Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009.; Díaz-García, A., Gonzalez-Robles, A., Mor, S., Mira, A., Quero, S., GarcíaPalacios, A., Baños, R. M., & Botella, C. (2020). Positive and Negative Affect Schedule (PANAS): psychometric properties of the online Spanish version in a clinical sample with emotional disorders. BMC psychiatry, 20(1), 56.https://doi.org/10.1186/s12888-020-2472-1; Dolcos, F., & Cabeza, R. (2002). Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 252-263. https://doi.org/10.3758/CABN.2.3.252.; Donchin, E. (1981). Surprise! … surprise?. Psychophysiology, 18(5), 493-513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x; Dufey, M., & Fernandez, A. M. (2012). Validez y confiabilidad del Positive Affect and Negative Affect Schedule (PANAS) en estudiantes universitarios chilenos. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 2(34), 157-173.; Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & emotion, 6(6), 409-434. https://doi.org/10.1080/02699939208409696; Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7 (2), 336. https://doi.org/10.1037/1528-3542.7.2.336; Fairfield, B., Mammarella, N., Di Domenico, A., & Palumbo, R. (2015). Running with emotion: When affective content hampers working memory performance. International Journal of Psychology, 50(2), 161-164. https://doi.org/10.1002/ijop.12101; Fehr, B., & Russell, J. A. (1984). Concept of emotion viewed from a prototype perspective. Journal of experimental psychology: General, 113(3), 464. https://doi.org/10.1037/0096-3445.113.3.464; Feng, C., Wang, L., Liu, C., Zhu, X., Dai, R., Mai, X., & Luo, Y.-J. (2012). The time course of the influence of valence and arousal on the implicit processing of affective pictures. PloS one, 7(1), e29668. https://doi.org/10.1371/journal.pone.0029668; Feng, J., Pratt, J., & Spence, I. (2012). Attention and visuospatial working memory share the same processing resources. Frontiers in psychology, 3, 103. https://doi.org/10.3389/fpsyg.2012.00103; Figueira, J. S., Oliveira, L., Pereira, M. G., Pacheco, L. B., Lobo, I., Motta-Ribeiro, G. C., & David, I. A. (2017). An unpleasant emotional state reduces working memory capacity: electrophysiological evidence. Social Cognitive and Affective Neuroscience, 12(6), 984-992. https://doi.org/10.1093/scan/nsx030; Friedman, H. R., & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience, 14(5), 2775-2788. https://doi.org/10.1523/JNEUROSCI.14-05-02775.1994; Gantiva, C., Barrera-Valencia, M., Cadavid-Ruiz, N., Calderón-Delgado, L., Gelves- Ospina, M., Herrera, E., Mejı́a-Orduz, M., Montoya-Arenas, D., & Suárez-Pico, P. (2019). Inducción de estados afectivos a través de imágenes. Segunda validación Colombiana del Sistema internacional de imágenes Afectivas (IAPS). Revista Latinoamericana de Psicología, 51(2), 176-195. https://doi.org/10.14349/rlp.2019.v51.n2.5; Garrison, K. E., & Schmeichel, B. J. (2019). Effects of emotional content on working memory capacity. Cognition and Emotion, 33(2), 370-377. https://doi.org/10.1080/02699931.2018.1438989; Goss-Sampson, M. (2019). Statistical analysis in JASP: A guide for students.; Gray, J. R. (2001). Emotional modulation of cognitive control: Approach–withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experimental Psychology: General, 130(3), 436. https://doi.org/10.1037/0096-3445.130.3.436; Grissmann, S., Faller, J., Scharinger, C., Spüler, M., & Gerjets, P. (2017). Electroencephalography based analysis of working memory load and affective valence in an n-back task with emotional stimuli. Frontiers in human neuroscience, 11, 616. https://doi.org/10.1016/j.bandc.2015.04.004; Groom, M. J., & Cragg, L. (2015). Differential modulation of the N2 and P3 event related potentials by response conflict and inhibition. Brain and cognition, 97, 1-9. https://doi.org/10.1016/j.bandc.2015.04.004; Gu, S., Wang, F., Patel, N. P., Bourgeois, J. A., & Huang, J. H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in psychology, 10, 781. https://doi.org/10.3389/fpsyg.2019.00781; Holmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: evidence from event-related brain potentials. Cognitive Brain Research, 16, 174-184. https://doi.org/10.1016/S0926-6410(02)00268-9; Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. (2013). Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. International journal of psychophysiology, 87 (3), 217-233. https://doi.org/10.1016/j.ijpsycho.2012.08.001; Huster, R. J., Messel, M. S., Thunberg, C., & Raud, L. (2020). The P300 as marker of inhibitory control–fact or fiction? Cortex, 132, 334-348. https://doi.org/10.1016/j.cortex.2020.05.021; Insel, T. R., & Cuthbert, B. N. (2015). Brain disorders? precisely. Science, 348(6234), 499-500. https://doi.org/10.1126/science.aab2358; James, W. (1884). II.—WHAT IS AN EMOTION ? Mind, os-IX(34), 188-205. https://doi.org/10.1093/mind/os-IX.34.188; Kensinger, E. A., & Corkin, S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion, 3(4), 378. https://doi.org/10.1037/1528-3542.3.4.378; Kessel, D., Garcı́a-Rubio, M. J., González, E. K., Tapia, M., López-Martı́n, S., Román, F. J., Capilla, A., Martı́nez, K., Colom, R., & Carretié, L. (2016). Working memory of emotional stimuli: Electrophysiological characterization. Biological Psychology, 119, 190-199. https://doi.org/10.1016/j.biopsycho.2016.07.009; Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity.Psychophysiology, 38(3), 557-577. https://doi.org/10.1017/S0048577201990559; Kopf, J., Dresler, T., Reicherts, P., Herrmann, M. J., & Reif, A. (2013). The effect of emotional content on brain activation and the late positive potential in a word n-back task. PloS one, 8(9), e75598. https://doi.org/10.1371/journal.pone.0075598; Kothe, C. (2014). Lab streaming layer (LSL).; Lamichhane, B., Westbrook, A., Cole, M. W., & Braver, T. S. (2020). Exploring brain- behavior relationships in the N-back task. NeuroImage, 212, 116683. https://doi.org/10.1016/j.neuroimage.2020.116683; Lang, P. J., Bradley, M. M., Cuthbert, B. N., et al. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1, 39-58.; Lindström, B. R., & Bohlin, G. (2011). Emotion processing facilitates working memory performance. Cognition & Emotion, 25(7), 1196-1204. https://doi.org/10.1080/02699931.2010.527703; Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213; Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.; Magyar-Moe, J. L. (2009). Chapter 3-positive psychological tests and measures. Therapist's guide to positive psychological interventions, 43-72.; Mammarella, N., Borella, E., Carretti, B., Leonardi, G., & Fairfield, B. (2013). Examining an emotion enhancement effect in working memory: Evidence from age-related differences. Neuropsychological rehabilitation, 23(3), 416-428. https://doi.org/10.1080/09602011.2013.775065; McNicol, D. (2005). A primer of signal detection theory. Psychology Press.; Miendlarzewska, E. A., Van Elswijk, G., Cannistraci, C. V., & van Ee, R. (2013). Working memory load attenuates emotional enhancement in recognition memory. Frontiers in psychology, 4, 112. https://doi.org/10.3389/fpsyg.2013.00112; Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81. https://doi.org/10.1037/h0043158; Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain research, 143(2), 313-323.; Moral de la Rubia, J. (2011). La escala de afecto positivo y negativo (PANAS) en parejas casadas mexicanas. CIENCIA ergo-sum, 18(2), 117-125.; Morris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467-470. https://doi.org/10.1038/30976; Murray, N., & Janelle, C. M. (2007). Event-related potential evidence for the processing efficiency theory. Journal of Sports Sciences, 25(2), 161-171. https://doi.org/10.1080/02640410600598505; Nakao, Y., Kodabashi, A., Yarita, M., Fujimoto, T., & Tamura, T. (2012). Temporal activities during P3 components on the working memory-related brain regions: N-back ERP study. Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, 424-427. https://doi.org/10.1109/BHI.2012.6211606.; Niedenthal, P. M., & Ric, F. (2017). Psychology of emotion. Psychology Press.; Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological bulletin, 131(4), 510. https://doi.org/10.1037/0033-2909.131.4.510; Oberauer, K. (2009). Design for a working memory. Psychology of learning and motivation, 51, 45-100. https://doi.org/10.1016/S0079-7421(09)51002-X; Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: an integrative review of ERP findings. Biological psychology, 77 (3), 247-265. https://doi.org/10.1016/j.biopsycho.2007.11.006; Organization, W. H., et al. (2017). Depression and other common mental disorders: global health estimates. World Health Organization.; Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59. https://doi.org/10.1002/hbm.20131; Passingham, R. (1975). Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain research, 92(1), 89-102.; Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior research methods, 51(1), 195-203.; Perez, V. B., Vogel, E. K., Luck, S., & Kappenman, E. (2012). What ERPs can tell us about working memory. The Oxford handbook of event-related potential components, 361-372.; Pessoa, L. (2008). On the relationship between emotion and cognition. Nature reviews neuroscience, 9(2), 148-158. https://doi.org/10.1038/nrn2317; Pessoa, L. (2009). How do emotion and motivation direct executive control?, Trends in cognitive sciences, 13(4), 160-166 https://doi.org/10.1016/j.tics.2009.01.006; Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental brain research, 133(1), 44-54. https://doi.org/10.1007/s002210000399; Plutchik, R. (2003). Emotions and life: Perspectives from psychology, biology, and evolution. American Psychological Association.; Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019; Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological psychology, 41(2), 103-146. https://doi.org/10.1016/0301-0511(95)05130-9; Prete, G., Capotosto, P., Zappasodi, F., & Tommasi, L. (2018). Contrasting hemispheric asymmetries for emotional processing from event-related potentials and behavioral responses. Neuropsychology, 32(3), 317. https://doi.org/10.1037/neu0000443; Raczy, K., & Orzechowski, J. (2019). When working memory is in a mood: Combined effects of induced affect and processing of emotional words. Current Psychology, 1-10. https://doi.org/10.1007/s12144-019-00208-x; Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage, 60(1), 830-846. https://doi.org/10.1016/j.neuroimage.2011.11.050; Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161. https://doi.org/10.1037/h0077714; Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One, 8(5), e63701. https://doi.org/10.1371/journal.pone.0063701; Sander, D. (2013). Models of Emotion. En P. V. Jorge Armony (Ed.), The cambridge handbook of human affective neuroscience. (pp. 5-53). Cambridge University Press.; Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., Wang, P. S. E., & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: research domain criteria. Journal of abnormal psychology, 119(4), 631.; Smith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clinical neurophysiology, 119(3), 704-714. https://doi.org/10.1016/j.clinph.2007.11.042; Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Review in Neurobiology, 14(3-4). https://doi.org/10.1615/CritRevNeurobiol.v14.i3-4.20; Stevenson, R. A., & James, T. W. (2008). Affective auditory stimuli: Characterization of the international Affective Digitized Sounds (IADS) by discrete emotional categories. Behavior research methods, 40(1), 315-321. https://doi.org/10.3758/BRM.40.1.315; Szuhany, K. L., MacKenzie Jr, D., & Otto, M. W. (2018). The impact of depressed mood, working memory capacity, and priming on delay discounting. Journal of behavior therapy and experimental psychiatry, 60, 37-41. https://doi.org/10.1016/j.jbtep.2018.03.001; Tsutsui, K.-I., Oyama, K., Nakamura, S., & Iijima, T. (2016). Comparative overview of visuospatial working memory in monkeys and rats. Frontiers in systems neuroscience, 10, 99. https://doi.org/10.3389/fnsys.2016.00099; Velasco-Matus, P. W., Rivera Aragón, S., Domı́nguez Espinosa, A. d. C., Méndez Rangel, F., & Dı́az Loving, R. (2021). Positive Affect/Negative Affect Scale for Mexicans (PANA-M): Evidences of Validity and Reliability. Acta de investigación psicológica, 11(1), 95-113. https://doi.org/10.22201/fpsi.20074719e.2021.1.377; Veloso, G. C., & Ty, W. E. G. (2021). The Effects of Emotional Working Memory Training on Trait Anxiety. Frontiers in Psychology, 11, 549623. https://doi.org/10.3389/fpsyg.2020.549623; Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255-274. https://doi.org/10.3758/CABN.3.4.255; Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063. https://doi.org/10.1037/0022-3514.54.6.1063; Wundt, W. M. (1912). An introduction to psychology.; Wundt, W. M., & Judd, C. H. (1902). Outlines of psychology; Xiu, L., Wu, J., Chang, L., & Zhou, R. (2018). Working memory training improves emotion regulation ability. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-31495-2; Yaple, Z. A., Stevens, W. D., & Arsalidou, M. (2019). Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 196, 16-31. https://doi.org/10.1016/j.neuroimage.2019.03.074; https://repositorio.unal.edu.co/handle/unal/83337; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

17
Dissertation/ Thesis

Contributors: Chuliá Soler, Helena, Gómez-Puig, Marta

File Description: 34 p.; application/pdf

Relation: Màster Oficial - Ciències Actuarials i Financeres (CAF); http://hdl.handle.net/2445/191173