Showing 1 - 20 results of 307 for search 'MICROGRIDS' Narrow Search
6
Conference

Contributors: Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla. TEP102: Ingeniería Automática y Robótica, Ministerio de Ciencia e Innovación (España) PID2019-105890RJ-I00, Ministerio de Ciencia e Innovación (España) PID2019-109071RBI00, Agence nationale de la recherche (France) ANR-18-CE40-0022-01

File Description: application/pdf

Relation: PID2019-105890RJ-I00; PID2019-109071RBI00; ANR-18-CE40-0022-01; https://ruc.udc.es/dspace/handle/2183/30846; https://idus.us.es/handle//11441/145463

13
Conference

Contributors: Universidad de Huelva, ESTIA INSTITUTE OF TECHNOLOGY, Projet PID2020-119217RA-I00 financé par MCIN/AEI/10.13039/ 501100011033Bourse “José Castillejo” (CAS19/00292)Bourse “Juan de la Cierva Incorporación” IJC2019-040114-I financée par MCIN/AEI/ 10.13039/501100011033

Superior Title: XLIII Jornadas de Automática 2022 ; https://hal.archives-ouvertes.fr/hal-03815372 ; XLIII Jornadas de Automática 2022, Sep 2022, Logroño, España. pp.755-761, ⟨10.17979/spudc.9788497498418.0755⟩

Subject Geographic: Logroño, Spain

14
Academic Journal

Superior Title: TecnoLógicas; Vol. 26 No. 56 (2023); e2565 ; TecnoLógicas; Vol. 26 Núm. 56 (2023); e2565 ; 2256-5337 ; 0123-7799

File Description: application/pdf; application/zip; text/xml; text/html

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2792; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2809; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2810; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2811; M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Trans Industr Inform, vol. 15, no. 3, pp. 1238–1250, Mar. 2019, https://doi.org/10.1109/TII.2018.2881540; M. Sandelic, S. Peyghami, A. Sangwongwanich, and F. Blaabjerg, “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112127, May. 2022, https://doi.org/10.1016/j.rser.2022.112127; M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, “Survey on microgrids with flexible boundaries: Strategies, applications, and future trends,” Electric Power Systems Research, vol. 205, p. 107765, Apr. 2022, https://doi.org/10.1016/j.epsr.2021.107765; V. Lavanya and N. S. Kumar, “A Review: Control Strategies for Power Quality Improvement in Microgrid,” International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 1–16, Mar. 2018, https://doi.org/10.20508/ijrer.v8i1.6643.g7290; K. M. Krishna, “Optimization analysis of Microgrid using HOMER - A case study,” in 2011 Annual IEEE India Conference, Dec. 2011, pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139566; S. Fazal, E. Haque, M. Taufiqul, and A. Gargoom, “Grid integration impacts and control strategies for renewable based microgrid,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103069, Mar. 2023, https://doi.org/10.1016/j.seta.2023.103069; J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems,” Energy Convers Manag, vol. 199, p. 112027, Nov. 2019, https://doi.org/10.1016/j.enconman.2019.112027; R. Hidalgo-Leon et al., “Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies, vol. 15, no. 5, p. 1776, Feb. 2022, https://doi.org/10.3390/en15051776; M. Ur Rashid, I. Ullah, M. Mehran, M. N. R. Baharom, and F. Khan, “Techno-Economic Analysis of Grid-Connected Hybrid Renewable Energy System for Remote Areas Electrification Using Homer Pro,” Journal of Electrical Engineering & Technology, vol. 17, no. 2, pp. 981–997, Mar. 2022, https://doi.org/10.1007/s42835-021-00984-2; P. Arévalo, A. A. Eras-Almeida, A. Cano, F. Jurado, and M. A. Egido-Aguilera, “Planning of electrical energy for the Galapagos Islands using different renewable energy technologies,” Electric Power Systems Research, vol. 203, p. 107660, Feb. 2022, https://doi.org/10.1016/j.epsr.2021.107660; S. Vendoti, M. Muralidhar, and R. Kiranmayi, “Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software,” Environ Dev Sustain, vol. 23, no. 1, pp. 351–372, Jan. 2021, https://doi.org/10.1007/s10668-019-00583-2; M. N. Uddin, M. M. Biswas, and S. Nuruddin, “Techno-economic impacts of floating PV power generation for remote coastal regions,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101930, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101930; S. Ladide, A. EL Fathi, M. Bendaoud, H. Hihi, and K. Faitah, “Flexible design and assessment of a stand-alone hybrid renewable energy system: a case study Marrakech, Morocco,” International Journal of Renewable Energy Research, vol. 9, no. 4, pp. 2003–2022, Dec. 2019, https://doi.org/10.20508/ijrer.v9i4.9936.g7806; S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, supplement 1, pp. 711–719, Mar. 2023, https://doi.org/10.1016/j.egyr.2022.11.065; F. A. Barrozo Budes, G. Valencia Ochoa, L. G. Obregon, A. Arango-Manrique, and J. R. Núñez Álvarez, “Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia,” Energies , vol. 13, no. 7, p. 1662, Apr. 2020, https://doi.org/10.3390/en13071662; D. Restrepo, B. Restrepo-Cuestas, and A. Trejos, “Microgrid analysis using HOMER: A case study,” DYNA (Colombia), vol. 85, no. 207, pp. 129–134, Oct. 2018, http://doi.org/10.15446/dyna.v85n207.69375; A. F. Torres Ome, A. L. Paque Salazar, and F. Díaz Franco, “Arquitecturas híbridas para la evaluación económica de un sistema de energía eólico-solar a partir del análisis de las variables meteorológicas en la ciudad de Neiva,” Cina Research, vol. 2, no. 3, pp. 14–27, Jan. 2018. https://journals.uninavarra.edu.co/index.php/cinaresearch/article/view/134; S. Ferahtia, H. Rezk, M. A. Abdelkareem, and A. G. Olabi, “Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm,” Applied Energy, vol. 306, pp. 118069, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118069; M. M. A. Seedahmed, M. A. M. Ramli, H. R. E. H. Bouchekara, M. S. Shahriar, A. H. Milyani, and M. Rawa, “A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 7, pp. 5183–5202, Jul. 2022, https://doi.org/10.1016/j.aej.2021.10.041; M. M. A. Seedahmed et al., “Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 8, pp. 6523–6540, Aug. 2022, https://doi.org/10.1016/j.aej.2021.12.013; S. Kumar, R. Sharma, S. Srinivasa Murthy, P. Dutta, W. He, and J. Wang, “Thermal analysis and optimization of stand-alone microgrids with metal hydride based hydrogen storage,” Sustainable Energy Technologies and Assessments, vol. 52, no. PA, p. 102043, Aug. 2022, https://doi.org/10.1016/j.seta.2022.102043; H. Mohammadpourkarbasi and S. Sharples, “Appraising the life cycle costs of heating alternatives for an affordable low carbon retirement development,” Sustainable Energy Technologies and Assessments, vol. 49, Jul. 2021, p. 101693, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101693; D. A. Figueroa Guerra, J. F. Culqui Tipan, M. D. Núñez Verdezoto, and O. D. Cruz Panchi, “Modelamiento de un sistema fotovoltaico conectado a la red considerando la variación de irradiancia solar en Homer Pro,” Ingeniería Investigación y Desarrollo, vol. 22, no. 1, pp. 60–71, Jun. 2022, https://doi.org/10.19053/1900771X.v22.n1.2022.14456; O. Tang, J. Rehme, and P. Cerin, “Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?,” Energy, vol. 241, no. 3, p. 122906, Feb. 2022, https://doi.org/10.1016/j.energy.2021.122906; C. Klemm and F. Wiese, “Indicators for the optimization of sustainable urban energy systems based on energy system modeling,” Energy Sustain Soc, vol. 12, no. 3, pp. 1–20, Jan. 2022, https://doi.org/10.1186/s13705-021-00323-3; A. K. Podder et al., “Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation,” Sustainability, vol. 14, no. 1, p. 166, Dec. 2021, https://doi.org/10.3390/su14010166; M. F. Ishraque et al., “Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies,” Sustainability, vol. 13, no. 22, p. 12734, Nov. 2021, https://doi.org/10.3390/su132212734; A. al Wahedi and Y. Bicer, “Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar,” Energy, vol. 243, p. 123008, Mar. 2022, https://doi.org/10.1016/j.energy.2021.123008; A. I. Omar, N. M. Khattab, and S. H. E. Abdel Aleem, “Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101701, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101701; M. S. Okundamiya, “Integration of photovoltaic and hydrogen fuel cell system for sustainable energy harvesting of a university ICT infrastructure with an irregular electric grid,” Energy Convers Manag, vol. 250, p. 114928, Dec. 2021, https://doi.org/10.1016/j.enconman.2021.114928; N. Majdi Nasab, J. Kilby, and L. Bakhtiaryfard, “Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand,” Energies, vol. 14, no. 12, p. 3636, Jun. 2021, https://doi.org/10.3390/en14123636; C. Ghenai, T. Salameh, and A. Merabet, “Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region,” Int J Hydrogen Energy, vol. 45, no. 20, pp. 11460–11470, Apr. 2020, https://doi.org/10.1016/j.ijhydene.2018.05.110; K. Rakhsia, M. Shezad, R. Yudhistira, N. Ruiz, A. Prasad, and G. Ropero, “Polygeneration System Design for Filipinas.” 2020. https://www.diva-portal.org/smash/get/diva2:1555554/FULLTEXT01.pdf; M. Hunt and A. Benigni, “Sensitivity Analysis of Optimal Battery Sizing to Differences in Microgrid Use,” in 2019 International Conference on Clean Electrical Power (ICCEP), Jul. 2019, pp. 444–449. https://doi.org/10.1109/ICCEP.2019.8890179; S. A. Luthfi, Novizon, and R. Fahreza, “Cost of Energy Sensitivity Analysis of PV/Diesel with Hydro Pumped Storage for Mentawai Microgrid System,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–5. https://doi.org/10.1109/GUCON50781.2021.9573985; M. Nur Sabrina Noorpi, K. Meng, X. Li, Z. Yang Dong, and W. Kong, “Zonal Formation for Multiple Microgrids using Load Flow Sensitivity Analysis,” in 2018 International Conference on Power System Technology (POWERCON), Nov. 2018, pp. 358–363. https://doi.org/10.1109/POWERCON.2018.8601576; P. Jagadeesh, M. Mohamed Thameem Ansari, and M. Saiveerraju, “Optimal Power Management of an Educational Institution Using HOMER,” Journal of Electrical Engineering and Technology, vol. 16, no. 4, pp. 1793–1798, Jul. 2021, https://doi.org/10.1007/s42835-021-00713-9; M. A. A. Rahmat et al., “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustainability (Switzerland), vol. 14, no. 20, Oct. 2022, https://doi.org/10.3390/su142013684; G. K. Suman, J. M. Guerrero, and O. P. Roy, “Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach,” Sustain Cities Soc, vol. 67, p. 102723, Apr. 2021, https://doi.org/10.1016/j.scs.2021.102723; J. O. Oladigbolu, M. A. M. Ramli, and Y. A. Al-Turki, “Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria,” Sustainability, vol. 11, no. 18, p. 4959, Sep. 2019, https://doi.org/10.3390/su11184959; M. H. Jahangir and R. Cheraghi, “Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load,” Sustainable Energy Technologies and Assessments, vol. 42, p. 100895, Dec. 2020, https://doi.org/10.1016/j.seta.2020.100895; F. Eze, J. Ogola, R. Kivindu, M. Egbo, and C. Obi, “Technical and economic feasibility assessment of hybrid renewable energy system at Kenyan institutional building: A case study,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101939, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101939; S. Sharma et al., “Modeling and sensitivity analysis of grid-connected hybrid green microgrid system,” Ain Shams Engineering Journal, vol. 13, no. 4, p. 101679, Jun. 2022, https://doi.org/10.1016/j.asej.2021.101679; S. Sharma and Y. R. Sood, “Optimal planning and sensitivity analysis of green microgrid using various types of storage systems,” Wind Engineering, vol. 45, no. 4, pp. 939–952, Aug. 2021, https://doi.org/10.1177/0309524X20941475; P. Malik, M. Awasthi, and S. Sinha, “Techno-economic and environmental analysis of biomass-based hybrid energy systems: A case study of a Western Himalayan state in India,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101189, Jun. 2021, https://doi.org/10.1016/j.seta.2021.101189; X. Yang, S. Liu, L. Zhang, J. Su, and T. Ye, “Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization,” Energy, vol. 206, p. 118078, Sep. 2020, https://doi.org/10.1016/j.energy.2020.118078; A. Oulis Rousis, D. Tzelepis, I. Konstantelos, C. Booth, and G. Strbac, “Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application,” Inventions, vol. 3, no. 3, p. 55, Aug. 2018, https://doi.org/10.3390/inventions3030055; D. I. Papaioannou, C. N. Papadimitriou, A. L. Dimeas, E. I. Zountouridou, G. C. Kiokes, and N. D. Hatziargyriou, “Optimization & Sensitivity Analysis of Microgrids using HOMER software- A Case Study,” in MedPower 2014, pp. 1–7, Nov. 2014. https://doi.org/10.1049/cp.2014.1668; V. V. V. S. N. Murty and A. Kumar, “Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 929–940, Sep. 2020, https://doi.org/10.35833/MPCE.2020.000273; H. Masrur, H. O. R. Howlader, M. Elsayed Lotfy, K. R. Khan, J. M. Guerrero, and T. Senjyu, “Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh,” Sustainability, vol. 12, no. 7, p. 2880, Apr. 2020, https://doi.org/10.3390/su12072880; T. Khan, M. Waseem, H. A. Muqeet, M. M. Hussain, M. Yu, and A. Annuk, “3E analyses of battery-assisted photovoltaic-fuel cell energy system: Step towards green community,” Energy Reports, vol. 8, pp. 184–191, Dec. 2022, https://doi.org/10.1016/j.egyr.2022.10.393; I. W. Son, Y. Jeong, S. Son, J. H. Park, and J. I. Lee, “Techno-economic evaluation of solar-nuclear hybrid system for isolated grid,” Appl Energy, vol. 306, no. PA, p. 118046, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118046; R. Chaurasia, S. Gairola, and Y. Pal, “Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies,” Sustainable Energy Technologies and Assessments, vol. 53, no. PD, p. 102787, Oct. 2022, https://doi.org/10.1016/j.seta.2022.102787; Congreso de la República de Colombia, “Ley 1715 del 13 de mayo de 2014,” 2014. http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf; Congreso de la República de Colombia, “Ley 2099 del 10 de julio de 2021,” 2021. https://dapre.presidencia.gov.co/normativa/normativa/LEY; HOMER Pro, “HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids,”, 2022. https://www.homerenergy.com/products/pro/index.html (accessed Jan. 26, 2023).; IDEAM, “Atlas Interactivo - Radiación IDEAM.”, Accessed: Sep. 27, 2022. http://atlas.ideam.gov.co/visorAtlasRadiacion.html; IDEAM, “Atlas Interactivo - Vientos - IDEAM.”, (accessed Sep. 27, 2022). http://atlas.ideam.gov.co/visorAtlasVientos.html; A. Singh, P. Baredar, and B. Gupta, “Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software,” Procedia Eng, vol. 127, pp. 743–750, 2015, https://doi.org/10.1016/j.proeng.2015.11.408; M. Nurunnabi, N. K. Roy, E. Hossain, and H. R. Pota, “Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh,” IEEE Access, vol. 7, pp. 150120–150140, Oct. 2019, https://doi.org/10.1109/ACCESS.2019.2945937; J. R. Baral, S. R. Behera, and T. Kisku, “Design and Economic Optimization of Community Load Based Microgrid System Using HOMER Pro,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Jul. 2022, pp. 1–5. https://doi.org/10.1109/ICICCSP53532.2022.9862479; M. Mehdi, N. Ammari, A. Alami Merrouni, H. El Gallassi, M. Dahmani, and A. Ghennioui, “An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations,” Renewable Energy, vol. 205, pp. 695–716, Mar. 2023, https://doi.org/10.1016/j.renene.2023.01.082; C. E. Tello-Argüelles, M. J. Espinosa-Trujillo, D. M. Medina Carril, “Evaluación del efecto de la radiación solar sobre la superficie de un sistema fotovoltaico,” in, ECORFAN, 2020, pp. 196–209. https://doi.org/10.35429/H.2020.5.196.209; S. A. Sadat, J. Faraji, M. Babaei, and A. Ketabi, “Techno‐economic comparative study of hybrid microgrids in eight climate zones of Iran,” Energy Sci Eng, vol. 8, no. 9, pp. 3004–3026, Sep. 2020, https://doi.org/10.1002/ese3.720; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565

16
Dissertation/ Thesis

Contributors: Cortés Guerrero, Camilo Andres, Romero Quete, David Fernando, Grupo de Investigación Emc-Un

File Description: xv, 63 páginas; application/pdf

Relation: M. J. Reno, S. Brahma, A. Bidram, and M. E. Ropp, “Influence of inverter-based resources on microgrid protection: Part 1: Microgrids in radial distribution systems,” IEEE Power and Energy Magazine, vol. 19, pp. 36–46, 5 2021.; M. E. Ropp and M. J. Reno, “Influence of inverter-based resources on microgrid protec- tion: Part 2: Secondary networks and microgrid protection,” IEEE Power and Energy Magazine, vol. 19, pp. 47–57, 5 2021.; S. Manson and E. McCullough, “Practical microgrid protection solutions: Promises and challenges,” IEEE Power and Energy Magazine, vol. 19, 2021.; A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” 2015.; B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” 2017.; S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, 2014.; D. B. Rathnayake, M. Akrami, C. Phurailatpam, S. P. Me, S. Hadavi, G. Jayasinghe, S. Zabihi, and B. Bahrani, “Grid forming inverter modeling, control, and applications,” IEEE Access, vol. 9, 2021.; R. Furlaneto, I. Kocar, A. Grilo-Pavani, U. Karaagac, A. Haddadi, and E. Farantatos, “Short circuit network equivalents of systems with inverter-based resources,” Electric Power Systems Research, vol. 199, p. 107314, 10 2021.; I. S. Association, IEEE Std. 1547-2018. Standard for Interconnection and Interoperabi- lity of Distributed Energy Resources with Associated Electric Power Systems Interfaces, 2018.; CREG, “Resolución creg 060 de 2019,” 2019.; R. Kabiri, D. G. Holmes, and B. P. McGrath, “Control of active and reactive power ripple to mitigate unbalanced grid voltages,” IEEE Transactions on Industry Applications, vol. 52, pp. 1660–1668, 3 2016.; A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. D¨orfler, “Interactions of grid-forming power converters and synchronous machines,” 2 2019.; B. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Transactions on Power Systems, vol. 37, 2022.; B. Mahamedi, J. G. Zhu, M. Eskandari, L. Li, and A. Mehrizi-Sani, “Analysis of fault response of inverter-interfaced distributed generators in sequence networks,” 2018.; A. Haddadi, I. Kocar, J. Mahseredjian, U. Karaagac, and E. Farantatos, “Performance of phase comparison line protection under inverter-based resources and impact of the german grid code,” IEEE Power and Energy Society General Meeting, vol. 2020-August, 2020.; B. Mahamedi and J. E. Fletcher, “The equivalent models of grid-forming inverters in the sequence domain for the steady-state analysis of power systems,” IEEE Transactions on Power Systems, vol. 35, 2020.; V. C. Cunha, T. Kim, N. Barry, P. Siratarnsophon, S. Santoso, W. Freitas, D. Rama-subramanian, and R. C. Dugan, “Generalized formulation of steady-state equivalent circuit models of grid-forming inverters,” IEEE Open Access Journal of Power and Energy, vol. 8, 2021.; A. Haddadi, E. Farantatos, I. Kocar, and U. Karaagac, “Impact of inverter based resources on system protection,” Energies, vol. 14, 2021.; I.-S. S. Board., “Ieee std 242-2001 (revision of ieee std 242-1986) [ieee buff book],” IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], 2001.; W. A. Elmore, Protective Relaying Theory and Applicantions, 2003.; A. Haddadi, M. Zhao, I. Kocar, E. Farantatos, and F. Martinez, “Impact of inverter-based resources on memory-polarized distance and directional protective relay elements,” 2020 52nd North American Power Symposium, NAPS 2020, 4 2021.; H. C. Kili¸ckiran, ˙ Ibrahim S¸eng¨ or, H. Akdemir, B. Kekezo˘glu, O. Erdin¸ c, and N. G. Paterakis, “Power system protection with digital overcurrent relays: A review of non- standard characteristics,” Electric Power Systems Research, vol. 164, pp. 89–102, 11 2018.; P. Barra, V. Lacerda, R. Fernandes, and D. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electric Power Systems Re- search, vol. 196, p. 107242, 7 2021.; H. Cao, D. Zhang, and S. Yi, “Real-time machine learning-based fault detection, classification, and locating in large scale solar energy-based systems: Digital twin simulation,” Solar Energy, vol. 251, pp. 77–85, 2 2023.; F. Aminifar, S. Teimourzadeh, A. Shahsavari, M. Savaghebi, and M. S. Golsorkhi, “Machine learning for protection of distribution networks and power electronics-interfaced systems,” Electricity Journal, vol. 34, 2021.; J. Marín-Quintero, C. Orozco-Henao, W. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector,” Applied Soft Computing, vol. 98, p. 106839, 1 2021.; R. Eslami and S. A. Hosseini, “A comprehensive method for fault detection in AC/DC hybrid microgrid,” Electric Power Components and Systems, vol. 50, 2022.; M. A. Zamani, A. Yazdani, and T. S. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids,” IEEE Transactions on Smart Grid, vol. 3, 2012.; C. Chandraratne, T. Logenthiran, R. T. Naayagi, and W. L. Woo, “Overview of adaptive protection system for modern power systems,” International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 2018.; F. B. dos Reis, J. O. C. Pinto, F. S. dos Reis, D. Issicaba, and J. G. Rolim, “Multi-agent dual strategy based adaptive protection for microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100501, 9 2021.; H. Wan, K. K. Li, and K. P. Wong, “An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system,” IEEE Transactions on Industry Applications, vol. 46, pp. 2118–2124, 9 2010.; D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, 2021.; V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation,” IEEE Transactions on Power Deli- very, vol. 32, 2017.; M. Sadoughi, M. Hojjat, and M. H. Abardeh, “Smart overcurrent relay for operating in islanded and grid-connected modes of a micro-grid without needing communication systems,” Energy Systems, vol. 13, 2022.; J. Mar´ın-Quintero, C. Orozco-Henao, J. C. Velez, and A. Bretas, “Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model,” International Journal of Electrical Power Energy Systems, vol. 130, p. 106960, 9 2021.; M. A. U. Khan, Q. Hong, A. Egea- ` Alvarez, A. Dy´sko, and C. Booth, “A communication- free active unit protection scheme for inverter dominated islanded microgrids,” International Journal of Electrical Power and Energy Systems, vol. 142, 2022.; B. K. Chaitanya, A. Yadav, and M. Pazoki, “An improved differential protection scheme for micro-grid using time-frequency transform,” International Journal of Electrical Power and Energy Systems, vol. 111, 2019.; P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” International Journal of Electrical Power and Energy Systems, vol. 118, 2020.; Y. Wang, M. Wen, and Y. Chen, “A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant,” International Journal of Electrical Power and Energy Systems, vol. 145, 2023.; Z. Alhadrawi, M. N. Abdullah, and H. Mokhlis, “Differential protection scheme for a micro grid with inverter-type sources based on positive sequence fault currents,” International Journal of Integrated Engineering, vol. 14, 2022.; S. P. Tiwari, E. Koley, and S. Ghosh, “Communication-less ensemble classifier-based protection scheme for dc microgrid with adaptiveness to network reconfiguration and weather intermittency,” Sustainable Energy, Grids and Networks, vol. 26, 2021.; X. Xu, H. Wen, L. Jiang, and Y. Hu, “Hybrid control and protection scheme for inverter dominated microgrids,” Journal of Power Electronics, vol. 17, pp. 744–755, 2017.; M. Acevedo-Iles, D. Romero-Quete, E. Mojica-Nava, and C. A. Cortes, “Distributed protection coordination algorithm applied to overcurrent-based schemes,” 2023 IEEE Belgrade PowerTech, pp. 1–6, 6 2023.; M. Acevedo-Iles, D. Romero-Quete, and C. A. Cortes, “An Integrated Protection Scheme for Active Distribution Networks Based on a Distributed Coordination Algorithm,” 2023, Manuscript submitted for publication on “IEEE Transactions on power delivery”.; Y. Chen, T. Ji, M. Li, Q. Wu, and X. Wang, “Power system harmonic estimation based on park transform,” Journal of Electrical Engineering and Technology, vol. 11, 2016.; Q. Salem, R. Aljarrah, M. Karimi, and A. Al-Quraan, “Grid-forming inverter control for power sharing in microgrids based on p/f and q/v droop characteristics,” Sustainability (Switzerland), vol. 15, 2023.; H. Just, “Modeling and control of power converters in weak and unbalanced electric grids.” The Deutsche Nationalbibliothek, 2021.; M. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal protection coordination scheme for radial distribution network considering on/off-grid,” IEEE Access, vol. 9, 2021.; J. Roberts and A. Guzm´an, “Directional element design and evaluation,” 21st Annual Western Protective Relay Conference, 1994.; D. Jones and J. J. Kumm, “Future distribution feeder protection using directional overcurrent elements,” IEEE Transactions on Industry Applications, vol. 50, 2014.; IEC Technical Committee 57, Communication networks and systems for power utility automation. Part 7-2, Basic information and communication structure–abstract communication service interface (ACSI).; ——, Communication networks and systems for power utility automation. Part 9-2, Specific communication service mapping (SCSM)–sampled values over ISO/IEC 8802- 3, 2011.; E. Mojica-Nava, Optimización y control en grafos. Editorial UN, 2022.; S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” pp. 1–122, 2010.; C. international des grands reseaux electriques. Comite d’etudes C6. and I. Conformes), Benchmark systems for network integration of renewable and distributed energy resources. CIGRE, 2014.; Manuel Acevedo-Iles and David Romero-Quete and Camilo A. Cortes, “Open-Source Code of an adaptive protection scheme using LIBIEC61850,” 2023, [Online]. Available: https://github.com/ManuAce9/Integral-Protection-Scheme.; M. Zillgith, “Libiec61850/ lib60870 open source libraries for iec 61850 and iec 60870-5- 101/104,” [Online; accessed Nov. 25,2023].; https://repositorio.unal.edu.co/handle/unal/86143; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

20
Academic Journal

Contributors: Ministerio de Ciencia, Tecnología e Innovación, Colombia, Universidad Tecnológica de Pereira, Colombia

Relation: Revista Iberoamericana de Automática e Informática industrial; info:eu-repo/grantAgreement/MINCIENCIAS//FP44842-031-2018/CO; info:eu-repo/grantAgreement/MINCIENCIAS//80740-774-2020/CO; https://doi.org/10.4995/riai.2022.15741; urn:issn:1697-7912; http://hdl.handle.net/10251/186928; urn:eissn:1697-7920