Showing 1 - 20 results of 92 for search 'GELATIN' Narrow Search
5
Academic Journal
9
Academic Journal

Superior Title: Russian Journal of Transplantology and Artificial Organs; Том 25, № 3 (2023); 87-96 ; Вестник трансплантологии и искусственных органов; Том 25, № 3 (2023); 87-96 ; 2412-6160 ; 1995-1191

File Description: application/pdf

Relation: https://journal.transpl.ru/vtio/article/view/1669/1512; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1382; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1383; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1384; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1385; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1386; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1387; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1388; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1389; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1390; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1391; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1392; Протезы кровеносных сосудов. Общие технические требования. Методы испытаний: ГОСТ 31514-2012. Дата введения 01.01.2015. М.: Стандартинформ, 2015.; Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011; 63: 209–220.; Новикова СП, Салохединова РР, Лосева СВ, Николашина ЛН, Левкина АЮ. Анализ физико-механических и структурных характеристик протезов кровеносных сосудов. Грудная и сердечно-сосудистая хирургия. 2012; 54: 27–33.; Wesolowski SA, Fries CC, Karlson KE, De Bakey M, Sawyer PN. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961; 50: 91–96.; Лебедев ЛВ, Плотник ЛЛ, Смирнов АД. Протезы кровеносных сосудов. Л.: Медицина, 1981; 192.; Guan G, Yu C, Fang X, Guidoin R, King MW, Wang H, Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater. 2021; 19: 22808000211014007. doi:10.1177/22808000211014007.; Yates SG, Barros D’Sa AA, Berger K, Fernandez LG, Wood SJ, Rittenhouse EA et al. The preclotting of porous arterial prostheses. Ann Surg. 1978; 188: 611–622.; Joseph J, Domenico Bruno V, Sulaiman N, Ward A, Johnson TW, Baby HM et al. A novel small diameter nanotextile arterial graft is associated with surgical feasibility and safety and increased transmural endothelial ingrowth in pig. J Nanobiotechnology. 2022; 20: 71. doi:10.1186/s12951-022-01268-1.; Hisagi M, Nishimura T, Ono M, Gojo S, Nawata K, Kyo S. New pre-clotting method for fibrin glue in a nonsealed graft used in an LVAD: the KYO method. J Artif Organs. 2010; 13: 174–177. doi:10.1007/s10047-010- 0504-1.; Weadock KS, Goggins JA. Vascular graft sealants. J Long Term Eff Med Implants. 1993; 3: 207–22.; Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol. 2019; 7: 166. doi:10.3389/fbioe.2019.00166.; Zdrahala RJ. Small caliber vascular grafts. Part I: state of the art. J Biomater Appl. 1996; 10: 309–329. doi:10.1177/088532829601000402.; Drury JK, Ashton TR, Cunningham JD, Maini R, Pollock JG. Experimental and clinical experience with a gelatin impregnated Dacron prosthesis. Ann Vasc Surg. 1987; 1: 542–547.; Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A et al. Negative In Vivo Results Despite Promising In vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279: 491– 504. doi:10.1016/j.jss.2022.05.032.; Huang F, Sun L, Zheng J. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs. 2008; 12: 932–941. doi:10.1111/j.1525- 1594.2008.00655.x.; Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997; 36: 200–208. doi:10.1002/(sici)1097-4636(199708)36:23.0.co;2-o.; Lisman A, Butruk B, Wasiak I, Ciach T. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. J Biomater Appl. 2014; 28: 1386–1396. doi:10.1177/0885328213509676.; Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater. 2013; 101: 506–519. doi:10.1002/jbm.b.32851.; Немец ЕА, Панкина АП, Сургученко ВА, Севастьянов ВИ. Биостабильность и цитотоксичность медицинских изделий на основе сшитых биополимеров. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 79–85. doi:10.15825/1995-1191-2018-1-79-85.; Глушкова ТВ, Овчаренко ЕА, Рогулина НВ, Клышников КЮ, Кудрявцева ЮА, Барбараш ЛС. Дисфункции эпоксиобработанных биопротезов клапанов сердца. Кардиология. 2019; 59 (10): 49–59. doi:10.18087/cardio.2019.10.n327.; Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002; 54: 13–36. doi:10.1016/s0169-409x(01)00240-x.; Chernonosova VS, Laktionov PP. Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels. Polymers (Basel). 2022; 14: 1698. doi:10.3390/polym14091698.; Fioretta ES, Simonet M, Smits AI, Baaijens FP, Bouten CV. Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules. 2014; 15: 821–829. doi:10.1021/bm4016418.; Azimi B, Nourpanah P, Rabiee M, Arbab SJ. Poly (ε-caprolactone) Fiber: An Overview. Engineered Fibers Fabrics. 2014; 9: 74–90. doi:10.1177/155892501400900309.; Reid JA, McDonald A, Callanan A. Electrospun fibre diameter and its effects on vascular smooth muscle cells. J Mater Sci Mater Med. 2021; 32: 131. doi:10.1007/s10856-021-06605-8.; Nemets EA, Surguchenko VA, Belov VYu, Xajrullina AI, Sevastyanov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels. Inorganic Materials: Applied Research. 2023; 14: 400– 407. doi:10.1134/S2075113323020338.; Лебедев АВ, Бойко АИ. Зависимость прочности сваренных кровеносных сосудов от диаметра, толщины и модуля Юнга стенки. Биомедицинская инженерия и электроника. 2014; 2: 54–61.; https://journal.transpl.ru/vtio/article/view/1669

10
Academic Journal

Superior Title: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 99-106 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 99-106 ; 2412-6160 ; 1995-1191

File Description: application/pdf

Relation: https://journal.transpl.ru/vtio/article/view/1621/1474; Маргасов АВ. Актуальные проблемы травмы периферических нервов. РМЖ. 2018; 12 (1): 21–24. Margasov AV. Aktual’nye problemy travmy perifericheskih nervov. RMZh. 2018; 12 (1): 21–24.; Говенько ФС. Хирургия повреждений периферических нервов. СПб.: Феникс, 2010. 384 с.; Шоломов ИИ, Киреев СИ, Левченко КК. Состояние нервно-мышечного аппарата у больных с повреждениями ключицы, костей плечевого пояса и проксимального отдела плеча. Практическая неврология и нейрореабилитация. 2008; 3: 16–18.; Kuffler DP, Foy C. Restoration of Neurological Function Following Peripheral Nerve Trauma. International Journal of Molecular Sciences. 2020; 21 (5): 1808.; Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chemical Neurosclence. 2019; 16 (11): 52.; English AW, Wilhelm JC, Ward PJ. Exercise, neurotrophins, and axon regeneration in the PNS. Physiology (Bethesda). 2014; 29: 437–445.; Piao CD, Yang K, Li P, Luo M. Autologous nerve graft repair of different degrees of sciatic nerve defect: stress and displacement at the anastomosis in a three-dimensional finite element simulation model. Neural regeneration res. 2015; 10 (5): 804–807.; Millesi H, Meisl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg. 1976; 58 (2): 209–218.; Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012; 43 (5): 553–572.; Chrząszcz P, Derbisz K, Suszyński K, Miodoński J, Trybulski R, Lewin­Kowalik J et al. Application of peripheral nerve conduits in clinical practice: a literature review. Neurol. Neurochir. Pol. 2018; 52: 427–435.; Мирошникова ПК, Люндуп АВ, Бацаленко НП, Крашенинников МЕ, Занг Ю, Фельдман НБ, Береговых ВВ. Перспективные нервные кондуиты для стимуляции регенерации поврежденных периферических нервов. Вестник РАМН. 2018; 73 (6): 388–400. doi:10.15690/vramn1063.; Величанская АГ, Абросимов ДА, Бугрова МЛ, Казаков АВ, Погадаева ЕВ, Радаев АМ и др. Реконструкция периферического нерва при использовании биодеградируемого и бионедеградируемого кондуитов в эксперименте. 2020; 12 (5): 48–56. https://doi.org/10.17691/stm2020.12.5.05.; Liu D, Mi D, Zhang T, Zhang Y, Yan J, Wang Y et al. Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats. Sci Rep. 2018; 8: 3443.; Du J, Jia X. Engineering nerve guidance conduits with three-dimenisonal bioprinting technology for long gap peripheral nerve regeneration. Neural Regen Res. 2019; 14: 2073.; Goulart CO, Pereira Lopes FR, Monte ZO, Dantas SV, Souto A, Oliveira JT et al. Evaluation of biodegradable polymer conduits – poly(l-lactic acid) – for guiding sciatic nerve regeneration in mice. Methods. 2016; 99: 28–36.; Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol. 2020; 16 (8): 554257.; Nemets EA, Surguchenko VA, Belov YuV, Xajrullina AI, Sevastianov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood. Inorganic Materials: Applied Research. 2023; 14 (2): 400–407.; Федяков АГ, Древаль ОН, Кузнецов АВ, Севастьянов ВИ, Перова НВ, Немец ЕА и др. Экспериментальное обоснование применения гелевого имплантата «Сферо®Гель» и пленочного имплантата «ЭластоПОБ»® при травме периферической нервной системы в эксперименте. Вестник трансплантологии и искусственных органов. 2009; 11 (4): 75–80.; Krarup C, Isben A, Boeckstyns M et al. Effects of a Collagen Nerve Guide Tube in Patients With a Median or Ulnar Nerve Lesion. American Association for Hand Surgery Annual Meeting. 2011; 99.; Archibald SJ, Shefner J, Krarup C et al. Monkey Median Nerve Repaired by Nerve Graft or Collagen Nerve Guide Tube. J Neurosci. 1995; 15 (5): 4109–4123.; https://journal.transpl.ru/vtio/article/view/1621