Showing 1 - 20 results of 57 for search 'POLYNOMIALS' Narrow Search
1
Academic Journal

File Description: application/pdf

Relation: Barhoumi, A.; Celsus, A. F.; Deaño, A. (2021). "Global‐phase portrait and large‐degree asymptotics for the Kissing polynomials." Studies in Applied Mathematics 147(2): 448-526.; https://hdl.handle.net/2027.42/169354; Studies in Applied Mathematics; Van Assche W. Orthogonal Polynomials and Painlevé equations, Volume 27 of Australian Mathematical Society Lecture Series. Cambridge: Cambridge University Press; 2018.; Its AR, Kuijlaars ABJ, Östensson J. Asymptotics for a special solution of the thirty fourth Painlevé equation. Nonlinearity. 2009; 22 ( 7 ): 1523 ‐ 1558.; Basor E, Chen Y, Ehrhardt T. Painlevé V and time‐dependent Jacobi polynomials. J Phys A. 2010; 43 ( 1 ): 015204, 25.; Olver FWJ, Olde Daalhuis AB, Lozier DW, et al. NIST digital library of mathematical functions. http://dlmf.nist.gov. Release. 2016; 1: 22.; Chihara TS. Mathematics and its Applications. In: Chihara TS, ed. An Introduction to Orthogonal Polynomials. Vol. 13. New York‐London‐Paris: Gordon and Breach Science Publishers; 1978.; Gautschi W. Orthogonal polynomials: computation and approximation. In: Cangiani A, ed. Numerical Mathematics and Scientific Computation. New York: Oxford University Press; 2004.; Fokas AS, Its AR, Kitaev AV. The isomonodromy approach to matric models in 2d quantum gravity. Commun Math Phys. 1992; 147 ( 2 ): 395 ‐ 430.; Deift P, Kriecherbauer T, McLaughlin KT‐R, Venakides S, Zhou X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun Pure Appl Math. 1999; 52 ( 11 ): 1335 ‐ 1425.; Deift P, Kriecherbauer T, McLaughlin KT‐R, Venakides S, Zhou X. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun Pure Appl Math. 1999; 52 ( 12 ): 1491 ‐ 1552.; Deift P, Zhou X. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the mKdV equation. Ann Math. 1993; 295 ‐ 368.; Bleher PM. Lectures on random matrix models. In: Deift P, Forrester P, eds. Random Matrices, Random Processes and Integrable Systems. New York, NY: Springer; 2011: 251 ‐ 349.; Deift P. Orthogonal Polynomials and Random Matrices: A Riemann‐Hilbert Approach. Vol. 3. Providence, RI: American Mathematical Society; 1999.; Farkas HM, Kra I. Riemann Surfaces. New York: Springer; 1992.; Silva GLF. Energy Problems and Quadratic Differentials in Random Matrix Theory. PhD Thesis, KU Leuven; 2016.; Strebel K. Quadratic Differentials. Berlin: Springer; 1984.; Pommerenke C. Univalent Functions. Gottingen: Vandenhoeck and Ruprecht; 1975.; Jenkins JA. Univalent Functions and Conformal Mapping. Vol. 18. Berlin/New York: Springer‐Verlag; 2013.; Bleher PM, Deaño A, Yattselev M. Topological expansion in the complex cubic log–gas model: one‐cut case. J Stat Phys. 2017; 166 ( 3‐4 ): 784 ‐ 827.; Its AR, Kuijlaars ABJ, Östensson J. Critical edge behavior in unitary random matrix ensembles and the thirty‐fourth Painlevé transcendent. Int Math Res Not IMRN. 2008;( 9 ): 67. Art. ID rnn017.; Wu X‐B, Xu S‐X, Zhao Y‐Q. Gaussian unitary ensemble with boundary spectrum singularity and σ ‐form of the Painlevé II equation. Stud Appl Math. 2018; 140 ( 2 ): 221 ‐ 251.; Xu SX, Zhao YQ. Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge. Stud Appl Math. 2011; 127 ( 1 ): 67 ‐ 105.; Yattselev ML. Strong asymptotics of Hermite‐Padé approximants for Angelesco systems. Canad J Math. 2016; 68 ( 5 ): 1159 ‐ 1200.; Aptekarev AI, Denisov SA, Yattselev ML. Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum. https://arxiv.org/abs/2004.04113. 19 Feb 2021; Bertola M. Boutroux curves with external field: equilibrium measures without a variational problem. Anal Math Phys. 2011; 1 ( 2‐3 ): 167 ‐ 211.; Claeys T, Kuijlaars ABJ. Universality in unitary random matrix ensembles when the soft edge meets the hard edge. Contemp Math. 2008; 458: 265 ‐ 280.; Aptekarev AI. Sharp constants for rational approximations of analytic functions. Sbornik Math. 2002; 193.1: 1.; Aptekarev AI, Stahl H. Asymptotics of Hermite‐Padé polynomials. In: Gonc-r AA, ed. Progress in Approximation Theory. Berlin, Heidelberg: Springer; 1992: 127 ‐ 167.; Gonchar AA, Rakhmanov EA. Equilibrium distributions and degree of rational approximation of analytic functions. Math USSR‐Sbornik. 1989; 62 ( 2 ): 305 ‐ 348.; Nikishin EM, Sorokin VN. Rational Approximations and Orthogonality. Providence, RI: American Mathematical Society; 1991.; Bertola M, Tovbis A. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr Approx. 2015; 41 ( 3 ): 529 ‐ 587.; Bertola M, Tovbis A. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. 12 2016, Paper No. 118, 50 pp.; Bleher PM, Deaño A. Topological expansion in the cubic random matrix model. Int Math Res Not IMRN. 2017;rns126:57.; Bleher PM, Deaño A. Painlevé I double scaling limit in the cubic random matrix model. Random Matrices Theory Appl. 5 ( 2 ): 1650004.; Álvarez G, Alonso LM, Medina E. Determination of s‐curves with applications to the theory of non‐Hermitian orthogonal polynomials. J Statist Mech Theory Exp. 2013; 2013 ( 06 ): P06006.; Álvarez G, Alonso LM, Medina E. Partition functions and the continuum limit in Penner matrix models. J Phys A Math Theor. 2014; 47 ( 31 ): 315205.; Álvarez G, Alonso LM, Medina E. Fine structure in the large n limit of the non‐Hermitian Penner matrix model. Ann Phys. 2015; 361: 440 ‐ 460.; Balogh F, Bertola M, Bothner T. Hankel determinant approach to generalized Vorob’ev–Yablonski polynomials and their roots. Constr Approx. 2016; 44 ( 3 ): 417 ‐ 453.; Bertola M, Bothner T. Zeros of large degree Vorob’ev–Yablonski polynomials via a Hankel determinant identity. Int Math Res Not. 2015; 2015 ( 19 ): 9330 ‐ 9399.; Bertola M, Elias Rebelo JG, Grava T. Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane. SIGMA Symmetry Integr Geom Methods Appl. 2018; 14: 091.; Asheim A, Deaño A, Huybrechs D, Wang H. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete Continuous Dyn Syst. 2012; 34 ( 3 ): 883 ‐ 901.; Celsus AF, Deaño A, Huybrechs D, Iserles A. The kissing polynomials and their Hankel determinants. https://arxiv.org/abs/1504.07297. 18 Jan 2021; Deaño A, Huybrechs D, Iserles A. Computing Highly Oscillatory Integrals. Philadelphia, PA: SIAM; 2017.; Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic Tau functions. Commun Math Phys. 2006; 263: 401 ‐ 437.; Jimbo M, Miwa T, Ueno K. Monodromy preserving deformation of the linear ordinary differential equations with rational coefficients. Physica D. 1980; 2: 306 ‐ 352.; Fokas AS, Its AR, Kapaev AA, Novokshenov VY. The Riemann‐Hilbert approach. In: Fokas A, Its A, Kapaev A, Novokshenov V, eds,. Painlevé transcendents, Volume 128 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society; 2006.; Jimbo M, Miwa T. Monodromy preserving deformation of the linear ordinary differential equations with rational coefficients II. Physica D. 1981; 2: 407 ‐ 448; Kuijlaars ABJ, McLaughlin KTR, Van Assche W, Vanlessen M. The Riemann‐Hilbert approach to strong asymptotics for orthogonal polynomials on [–1,1]. Adv Math. 2004; 188: 337 ‐ 398.; Deaño A. Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval. J Approx Theory. 2014; 186: 33 ‐ 63.; Celsus AF, Silva GLF. Supercritical regime for the Kissing polynomials. J Approx Theory. 2020; 255: 105408.; Barhoumi AB. Strong asymptotics of Jacobi‐type Kissing polynomials. https://arxiv.org/abs/2101.04147. 11 Jan 2021; Nuttall J, Singh SR. Orthogonal polynomials and padé approximants associated with a system of arcs. J Approx Theory. 1977; 21 ( 1 ): 1 ‐ 42.; Stahl H. Extremal domains associated with an analytic function i, ii. Complex Var Elliptic Equ. 1985; 4 ( 4 ): 311 ‐ 324, 325‐338.; Stahl H. Orthogonal polynomials with complex‐valued weight function, i, ii. Constr Approx. 1986; 2 ( 1 ): 225 ‐ 240, 241‐251.; Rakhmanov EA. Orthogonal polynomials and S‐curves. Recent advances in orthogonal polynomials, special functions, and their applications, 195‐239, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012.; Aptekarev AI, Yattselev ML. Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials. Acta Mathematica. 2015; 215 ( 2 ): 217 ‐ 280.; Kuijlaars ABJ, Silva GLF. S‐curves in polynomial external fields. J Approx Theory. 2015; 191: 1 ‐ 37.; Martínez‐Finkelshtein A, Rakhmanov EA. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. Commun Math Phys. 2011; 302 ( 1 ): 53 ‐ 111.; Martínez‐Finkelshtein A, Rakhmanov EA. Do orthogonal polynomials dream of symmetric curves? Found Comput Math. 2016; 16 ( 6 ): 1697 ‐ 1736.; Martinez‐Finkelshtein A, Silva GLF. Critical measures for vector energy: global structure of trajectories of quadratic differentials. Adv Math. 2016; 302: 1137 ‐ 1232.; Martínez‐Finkelshtein A, Silva GLF. Critical measures for vector energy: asymptotics of non‐diagonal multiple orthogonal polynomials for a cubic weight. Adv Math. 2019; 349: 246 ‐ 315.; Yattselev ML. Symmetric contours and convergent interpolation. J Approx Theory. 2018; 225: 76 ‐ 105.; Kamvissis S, McLaughlin KTR, Miller PD. Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM‐154). Number 154. Princeton University Press; 2003.; Tovbis A, Venakides S. Nonlinear steepest descent asymptotics for semiclassical limit of integrable systems: continuation in the parameter space. Commun Mathe Phys. 2010; 295 ( 1 ): 139 ‐ 160.; Tovbis A, Venakides S, Zhou X. On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Commun Pure Appl Math. 2004; 57 ( 7 ): 877 ‐ 985.; Deift P, Kriecherbauer T, McLaughlin KT‐R. New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J Approx Theory. 1998; 95 ( 3 ): 388 ‐ 475.

2
Academic Journal

File Description: application/pdf

Relation: Song, Siliang; Zhang, Jianzhi (2021). "Unbiased inference of the fitness landscape ruggedness from imprecise fitness estimates." Evolution 75(11): 2658-2671.; https://hdl.handle.net/2027.42/170981; Evolution; Pfaender, J., R. K. Hadiaty, U. K. Schliewen, and F. Herder. 2016. Rugged adaptive landscapes shape a complex, sympatric radiation. Proc. R. Soc. B Biol. Sci. 283: 20152342. https://doi.org/10.1098/rspb.2015.2342; Franke, J., A. Klozer, J. A. de Visser, and J. Krug. 2011. Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7: e1002134. https://doi.org/10.1371/journal.pcbi.1002134; Goldberg, D. 1989. Genetic algorithms and walsh functions: part I, a gentle introduction. Complex Syst. 3: 129 – 152.; Hansen, T. F., and G. P. Wagner. 2001. Modeling genetic architecture: a multilinear theory of gene interaction. Theor. Popul. Biol. 59: 61 – 86. https://doi.org/10.1006/tpbi.2000.1508; Hwang, S., B. Schmiegelt, L. Ferretti, and J. Krug. 2018. Universality classes of interaction structures for NK fitness landscapes. J. Stat. Phys. 172: 226 – 278.; Jiang, P. P., R. B. Corbett‐Detig, D. L. Hartl, and E. R. Lozovsky. 2013. Accessible mutational trajectories for the evolution of pyrimethamine resistance in the malaria parasite Plasmodium vivax. J. Mol. Evol. 77: 81 – 91. https://doi.org/10.1007/s00239‐013‐9582‐z; Kauffman, S. A., and E. D. Weinberger. 1989. The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141: 211 – 245. https://doi.org/10.1016/s0022‐5193(89)80019‐0; Kuo, S. T., R. L. Jahn, Y. J. Cheng, Y. L. Chen, Y. J. Lee, F. Hollfelder, J. D. Wen, and H. D. Chou. 2020. Global fitness landscapes of the Shine‐Dalgarno sequence. Genome Res. 30: 711 – 723. https://doi.org/10.1101/gr.260182.119; Li, C., W. Qian, C. J. Maclean, and J. Zhang. 2016. The fitness landscape of a tRNA gene. Science 352: 837 – 840. https://doi.org/10.1126/science.aae0568; Limic, V., and R. Pemantle. 2004. More rigorous results on the Kauffman–Levin model of evolution. Ann. Probab. 32: 2149 – 2178.; Lobkovsky, A. E., Y. I. Wolf, and E. V. Koonin. 2011. Predictability of evolutionary trajectories in fitness landscapes. PLoS Comput. Biol. 7: e1002302. https://doi.org/10.1371/journal.pcbi.1002302; Martin, C. H., and P. C. Wainwright. 2013. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339: 208 – 211. https://doi.org/10.1126/science.1227710; Neidhart, J., I. G. Szendro, and J. Krug. 2014. Adaptation in tunably rugged fitness landscapes: the rough Mount Fuji model. Genetics 198: 699 – 721. https://doi.org/10.1534/genetics.114.167668; Ogden, P. J., E. D. Kelsic, S. Sinai, and G. M. Church. 2019. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine‐guided design. Science 366: 1139 – 1143. https://doi.org/10.1126/science.aaw2900; Poelwijk, F. J., D. J. Kiviet, D. M. Weinreich, and S. J. Tans. 2007. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445: 383 – 386. https://doi.org/10.1038/nature05451; Poelwijk, F. J., M. Socolich, and R. Ranganathan. 2019. Learning the pattern of epistasis linking genotype and phenotype in a protein. Nat. Commun. 10: 4213. https://doi.org/10.1038/s41467‐019‐12130‐8; Pokusaeva, V. O., D. R. Usmanova, E. V. Putintseva, L. Espinar, K. S. Sarkisyan, A. S. Mishin, N. S. Bogatyreva, D. N. Ivankov, A. V. Akopyan, S. Y. Avvakumov, et al. 2019. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15: e1008079. https://doi.org/10.1371/journal.pgen.1008079; Sarkisyan, K. S., D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov, D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, et al. 2016. Local fitness landscape of the green fluorescent protein. Nature 533: 397 – 401. https://doi.org/10.1038/nature17995; Szendro, I. G., M. F. Schenk, J. Franke, J. Krug, and J. A. G. M. de Visser. 2013. Quantitative analyses of empirical fitness landscapes. J. Stat. Mech. 2013: P01005. https://doi.org/10.1088/1742‐5468/2013/01/p01005; Weinberger, E. D. 1991. Local properties of Kauffman’s N‐k model: a tunably rugged energy landscape. Phys. Rev. A 44: 6399 – 6413. https://doi.org/10.1103/physreva.44.6399; Weinreich, D. M., N. F. Delaney, M. A. Depristo, and D. L. Hartl. 2006. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312: 111 – 114. https://doi.org/10.1126/science.1123539; Weinreich, D. M., Y. Lan, C. S. Wylie, and R. B. Heckendorn. 2013. Should evolutionary geneticists worry about higher‐order epistasis? Curr. Opin. Genet. Dev. 23: 700 – 707. https://doi.org/10.1016/j.gde.2013.10.007; Weinreich, D. M., Y. Lan, J. Jaffe, and R. B. Heckendorn. 2018. The influence of higher‐order epistasis on biological fitness landscape topography. J. Stat. Phys. 172: 208 – 225. https://doi.org/10.1007/s10955‐018‐1975‐3; Aguilar‐Rodriguez, J., J. L. Payne, and A. Wagner. 2017. A thousand empirical adaptive landscapes and their navigability. Nat. Ecol. Evol. 1: 45. https://doi.org/10.1038/s41559‐016‐0045; Aita, T., M. Iwakura, and Y. Husimi. 2001. A cross‐section of the fitness landscape of dihydrofolate reductase. Protein Eng. 14: 633 – 638. https://doi.org/10.1093/protein/14.9.633; Anderson, D. W., A. N. McKeown, and J. W. Thornton. 2015. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. Elife 4: e07864. https://doi.org/10.7554/eLife.07864; Bank, C., S. Matuszewski, R. T. Hietpas, and J. D. Jensen. 2016. On the (un)predictability of a large intragenic fitness landscape. Proc. Natl. Acad. Sci. USA 113: 14085 – 14090. https://doi.org/10.1073/pnas.1612676113; Carneiro, M., and D. L. Hartl. 2010. Colloquium papers: adaptive landscapes and protein evolution. Proc. Natl. Acad. Sci. USA 107: 1747 – 1751. https://doi.org/10.1073/pnas.0906192106; Domingo, J., G. Diss, and B. Lehner. 2018. Pairwise and higher‐order genetic interactions during the evolution of a tRNA. Nature 558: 117 – 121. https://doi.org/10.1038/s41586‐018‐0170‐7; Durrett, R., and V. Limic. 2003. Rigorous results for the NK model. Ann. Probab. 31: 1713 – 1753.; Ferretti, L., B. Schmiegelt, D. Weinreich, A. Yamauchi, Y. Kobayashi, F. Tajima, and G. Achaz. 2016. Measuring epistasis in fitness landscapes: the correlation of fitness effects of mutations. J. Theor. Biol. 396: 132 – 143. https://doi.org/10.1016/j.jtbi.2016.01.037; Firnberg, E., J. W. Labonte, J. J. Gray, and M. Ostermeier. 2014. A comprehensive, high‐resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 31: 1581 – 1592. https://doi.org/10.1093/molbev/msu081

3
Academic Journal

File Description: application/pdf

Relation: Tran, Vinh Ngoc; Dwelle, M. Chase; Sargsyan, Khachik; Ivanov, Valeriy Y.; Kim, Jongho (2020). "A Novel Modeling Framework for Computationally Efficient and Accurate Real‐Time Ensemble Flood Forecasting With Uncertainty Quantification." Water Resources Research 56(3): n/a-n/a.; https://hdl.handle.net/2027.42/154302; Water Resources Research; Shen, Z. Y., Chen, L., & Chen, T. ( 2012 ). Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: A case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 16 ( 1 ), 121 – 132. https://doi.org/10.5194/hess‐16‐121‐2012; Thompson, J. R., Sørenson, H. R., Gavin, H., & Refsgaard, A. ( 2004 ). Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology, 293 ( 1‐4 ), 151 – 179. https://doi.org/10.1016/j.jhydrol.2004.01.017; Todini, E. ( 1999 ). Using phase‐state modelling for inferring forecasting uncertainty in nonlinear stochastic decision schemes. Journal of Hydroinformatics, 1 ( 2 ), 75 – 82. https://doi.org/10.2166/hydro.1999.0007; Todini, E. ( 2004 ). Role and treatment of uncertainty in real‐time flood forecasting. Hydrological Processes, 18 ( 14 ), 2743 – 2746. https://doi.org/10.1002/hyp.5687; Tran, V. N., & Kim, J. ( 2019 ). Quantification of predictive uncertainty with a metamodel: Toward more efficient hydrologic simulations. Stochastic Environmental Research and Risk Assessment, 33 ( 7 ), 1453 – 1476. https://doi.org/10.1007/s00477‐019‐01703‐0; United Nations Development Programme (UNDP) ( 1999 ). Viet Nam: Flood damage summary 06 Nov 1999, edited, ReliefWeb. Hanoi, Vietnam.; Vrugt, J. A. ( 2016 ). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling & Software, 75, 273 – 316. https://doi.org/10.1016/j.envsoft.2015.08.013; Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., & Verstraten, J. M. ( 2005 ). Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resources Research, 41 ( 1 ). https://doi.org/10.1029/2004wr003059; Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., & Robinson, B. A. ( 2008 ). Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment, 23 ( 7 ), 1011 – 1026. https://doi.org/10.1007/s00477‐008‐0274‐y; Wang, D., Chen, Y., & Cai, X. ( 2009 ). State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resources Research, 45 ( 11 ). https://doi.org/10.1029/2008wr007401; Wang, S., Ancell, B. C., Huang, G. H., & Baetz, B. W. ( 2018 ). Improving robustness of hydrologic ensemble predictions through probabilistic pre‐ and post‐processing in sequential data assimilation. Water Resources Research, 54 ( 3 ), 2129 – 2151. https://doi.org/10.1002/2018wr022546; Wang, S., Huang, G. H., Baetz, B. W., & Ancell, B. C. ( 2017 ). Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion. Journal of Hydrology, 548, 484 – 497. https://doi.org/10.1016/j.jhydrol.2017.03.027; Wang, S., Huang, G. H., Baetz, B. W., & Huang, W. ( 2015 ). A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment. Journal of Hydrology, 530, 716 – 733. https://doi.org/10.1016/j.jhydrol.2015.10.021; Weerts, A. H., & El Serafy, G. Y. H. ( 2006 ). Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models. Water Resources Research, 42 ( 9 ). https://doi.org/10.1029/2005wr004093; Wei, C., & Dewoolkar, M. M. ( 2006 ). Formulation of capillary hysteresis with internal state variables. Water Resources Research, 42. https://doi.org/10.1029/2005wr004594; Whitaker, J. S. ( 2012 ). Developments in ensemble data assimilation, paper presented at Proceedings of the Seminar on Data assimilation for atmosphere and ocean, ECMWF, 6‐9. September, 2011.; Whitaker, J. S., & Hamill, T. M. ( 2002 ). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130 ( 7 ), 1913 – 1924. https://doi.org/10.1175/1520‐0493(2002)1302.0.co;2; Wiener, N. ( 1938 ). The homogeneous chaos. American Journal of Mathematics, 60 ( 4 ), 897. https://doi.org/10.2307/2371268; Wu, B., Zheng, Y., Tian, Y., Wu, X., Yao, Y., Han, F., Liu, J., & Zheng, C. ( 2014 ). Systematic assessment of the uncertainty in integrated surface water‐groundwater modeling based on the probabilistic collocation method. Water Resources Research, 50, 5848 – 5865. https://doi.org/10.1002/2014wr015366; Xie, X., & Zhang, D. ( 2010 ). Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources, 33 ( 6 ), 678 – 690. https://doi.org/10.1016/j.advwatres.2010.03.012; Xie, X., & Zhang, D. ( 2013 ). A partitioned update scheme for state‐parameter estimation of distributed hydrologic models based on the ensemble Kalman filter. Water Resources Research, 49, 7350 – 7365. https://doi.org/10.1002/2012wr012853; Xiu, D., & Karniadakis, G. E. ( 2002 ). The Wiener‐Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24 ( 2 ), 619 – 644. https://doi.org/10.1137/s1064827501387826; Young, P. C. ( 2002 ). Advances in real‐time flood forecasting. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 360 ( 1796 ), 1433 – 1450. https://doi.org/10.1098/rsta.2002.1008; Zahmatkesh, Z., Karamouz, M., & Nazif, S. ( 2015 ). Uncertainty based modeling of rainfall‐runoff: Combined differential evolution adaptive Metropolis (DREAM) and K‐means clustering. Advances in Water Resources, 83, 405 – 420. https://doi.org/10.1016/j.advwatres.2015.06.012; Zhang, H., Hendricks Franssen, H.‐J., Han, X., Vrugt, J. A., & Vereecken, H. ( 2017 ). State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter. Hydrology and Earth System Sciences, 21 ( 9 ), 4927 – 4958. https://doi.org/10.5194/hess‐21‐4927‐2017; Zhang, X., Liu, P., Cheng, L., Liu, Z., & Zhao, Y. ( 2018 ). A back‐fitting algorithm to improve real‐time flood forecasting. Journal of Hydrology, 562, 140 – 150. https://doi.org/10.1016/j.jhydrol.2018.04.051; Abbaszadeh, P., Moradkhani, H., & Yan, H. ( 2018 ). Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo. Advances in Water Resources, 111, 192 – 204. https://doi.org/10.1016/j.advwatres.2017.11.011; Ajami, N. K., Duan, Q., & Sorooshian, S. ( 2007 ). An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resources Research, 43, W01403. https://doi.org/10.1029/2005wr004745; Associated Programme on Flood Management (APFM) ( 2013 ). Integrated flood management tools series: Flood forecasting and early warning. Rep., Associated Programme on Flood Management.; Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. ( 2002 ). A tutorial on particle filters for online nonlinear/non‐Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50 ( 2 ), 174 – 188. https://doi.org/10.1109/78.978374; Ballio, F., & Guadagnini, A. ( 2004 ). Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resources Research, 40, W04603. https://doi.org/10.1029/2003wr002876; Bauser, H. H., Berg, D., Klein, O., & Roth, K. ( 2018 ). Inflation method for ensemble Kalman filter in soil hydrology. Hydrology and Earth System Sciences Discussions, 1‐18. https://doi.org/10.5194/hess‐2018‐74; Berveiller, M., Sudret, B., & Lemaire, M. ( 2006 ). Stochastic finite elements: A non intrusive approach by regression. Eur. J. Comput. Mech., 15.; Beven, K. ( 1989 ). Changing ideas in hydrology—The case of physically‐based models. Journal of Hydrology, 105 ( 1‐2 ), 157 – 172. https://doi.org/10.1016/0022‐1694(89)90101‐7; Beven, K. ( 2000 ). Uniqueness of place and non‐uniqueness of models in assessing predictive uncertainty, paper presented at Computational methods in water resources—Volume 2—Computational methods, surface water systems and hydrology.; Beven, K. ( 2006 ). A manifesto for the equifinality thesis. Journal of Hydrology, 320 ( 1‐2 ), 18 – 36. https://doi.org/10.1016/j.jhydrol.2005.07.007; Beven, K., & Binley, A. ( 1992 ). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6 ( 3 ), 279 – 298. https://doi.org/10.1002/hyp.3360060305; Beven, K., & Freer, J. ( 2001 ). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249 ( 1‐4 ), 11 – 29. https://doi.org/10.1016/s0022‐1694(01)00421‐8; Blasone, R.‐S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., & Zyvoloski, G. A. ( 2008 ). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31 ( 4 ), 630 – 648. https://doi.org/10.1016/j.advwatres.2007.12.003; Blatman, G., & Sudret, B. ( 2008 ). Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mécanique, 336 ( 6 ), 518 – 523. https://doi.org/10.1016/j.crme.2008.02.013; Blatman, G., & Sudret, B. ( 2010 ). An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25 ( 2 ), 183 – 197. https://doi.org/10.1016/j.probengmech.2009.10.003; Blatman, G., & Sudret, B. ( 2011 ). Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230 ( 6 ), 2345 – 2367. https://doi.org/10.1016/j.jcp.2010.12.021; Brier, G. W. ( 1950 ). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78 ( 1 ), 1 – 3. https://doi.org/10.1175/1520‐0493(1950)0782.0.co;2; Burgers, G., van Leeuwen, P. J., & Evensen, G. ( 1998 ). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126 ( 6 ), 1719 – 1724. https://doi.org/10.1175/1520‐0493(1998)1262.0.co;2; Butts, M. B., Payne, J. T., Kristensen, M., & Madsen, H. ( 2004 ). An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298 ( 1‐4 ), 242 – 266. https://doi.org/10.1016/j.jhydrol.2004.03.042; Caflisch, R. E. ( 1998 ). Monte Carlo and quasi‐Monte Carlo methods. Acta Numerica, 7, 1 – 49.; Cameron, D., Beven, K., Tawn, J., & Naden, P. ( 2000 ). Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation). Hydrology and Earth System Sciences Discussions, 4 ( 1 ), 23 – 34.; Chen, H., Yang, D., Hong, Y., Gourley, J. J., & Zhang, Y. ( 2013 ). Hydrological data assimilation with the ensemble square‐root‐filter: Use of streamflow observations to update model states for real‐time flash flood forecasting. Advances in Water Resources, 59, 209 – 220. https://doi.org/10.1016/j.advwatres.2013.06.010; Cheng, R., & Jin, Y. ( 2015 ). A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern, 45 ( 2 ), 191 – 204. https://doi.org/10.1109/TCYB.2014.2322602; Choi, H. T., & Beven, K. ( 2007 ). Multi‐period and multi‐criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. Journal of Hydrology, 332 ( 3‐4 ), 316 – 336. https://doi.org/10.1016/j.jhydrol.2006.07.012; Cintra, R. S., & Velho, H. F. d. C. ( 2018 ). Data assimilation by artificial neural networks for an atmospheric General Circulation Model. In Advanced Applications for Artificial Neural Networks (Chap. 14, pp. 266 – 286 ). Rijeka, Croatia: IN‐TECH. https://doi.org/10.5772/intechopen.70791; Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., & Uddstrom, M. J. ( 2008 ). Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31 ( 10 ), 1309 – 1324. https://doi.org/10.1016/j.advwatres.2008.06.005; Crestaux, T., Le Maıˆtre, O., & Martinez, J.‐M. ( 2009 ). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94 ( 7 ), 1161 – 1172. https://doi.org/10.1016/j.ress.2008.10.008; Danish Hydraulic Institute ( 2014 ). DHI Mike 11: A modelling system for rivers and channels. Reference Manual, Danish Hydraulic Institute (DHI) Water & Environment: Hørsholm, Denmark.; Davis, P. J., & Rabinowitz, P. ( 2007 ). Methods of numerical integration. Courier: Corporation.; Davison, B., Fortin, V., Pietroniro, A., Yau, M. K., & Leconte, R. ( 2017 ). Parameter‐state ensemble data assimilation using Approximate Bayesian Computing for short‐term hydrological prediction. Hydrology and Earth System Sciences Discussions, 1‐38. https://doi.org/10.5194/hess‐2017‐482; Debusschere, B. J., Sargsyan, K., Najm, H. N., & Safta, C. ( 2016 ). The Uncertainty Quantification Toolkit (UQTk). In in Handbook of Uncertainty Quantification (Chap. 53, pp. 1807 – 1828 ). Livermore, CA: Sandia National Laboratories. https://doi.org/10.1007/978‐3‐319‐11259‐6_56‐1; DeChant, C. M., & Moradkhani, H. ( 2012 ). Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resources Research, 48, W04518. https://doi.org/10.1029/2011wr011011; DeChant, C. M., & Moradkhani, H. ( 2014 ). Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and Sequential Bayesian Combination. Journal of Hydrology, 519, 2967 – 2977. https://doi.org/10.1016/j.jhydrol.2014.05.045; Dwelle, M. C., Kim, J., Sargsyan, K., & Ivanov, V. Y. ( 2019 ). Streamflow, stomata, and soil pits: Sources of inference for complex models with fast, robust uncertainty quantification. Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2019.01.002; Eldred, M. S., Dalbey, K. R., Bohnhoff, W. J., Adams, B. M., Swiler, L. P., Hough, P. D., Gay, D. M., Eddy, J. P., & Haskell, K. H. ( 2010 ). Dakota, A multilevel parallel object‐oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.2 Theory Manual Rep (Vol. 2007 ). Albuquerque, NM: Sandia National Laboratories.; Evensen, G. ( 1994 ). Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99 ( C5 ), 10143. https://doi.org/10.1029/94jc00572; Fan, Y., Huang, W., Huang, G. H., Huang, K., & Zhou, X. ( 2014 ). A PCM‐based stochastic hydrological model for uncertainty quantification in watershed systems. Stochastic Environmental Research and Risk Assessment, 29 ( 3 ), 915 – 927. https://doi.org/10.1007/s00477‐014‐0954‐8; Fan, Y. R., Huang, G. H., Baetz, B. W., Li, Y. P., Huang, K., Li, Z., Chen, X., & Xiong, L. H. ( 2016 ). Parameter uncertainty and temporal dynamics of sensitivity for hydrologic models: A hybrid sequential data assimilation and probabilistic collocation method. Environmental Modelling & Software, 86, 30 – 49. https://doi.org/10.1016/j.envsoft.2016.09.012; Fatichi, S., Katul, G. G., Ivanov, V. Y., Pappas, C., Paschalis, A., Consolo, A., Kim, J., & Burlando, P. ( 2015 ). Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resources Research, 51, 3505 – 3524. https://doi.org/10.1002/2014wr016102; Feinberg, J., & Langtangen, H. P. ( 2015 ). Chaospy: An open source tool for designing methods of uncertainty quantification. Journal of Computational Science, 11, 46 – 57. https://doi.org/10.1016/j.jocs.2015.08.008; Fujita, T., Stensrud, D. J., & Dowell, D. C. ( 2007 ). Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Monthly Weather Review, 135 ( 5 ), 1846 – 1868. https://doi.org/10.1175/mwr3391.1; Ghanem, R. G., & Spanos, P. D. ( 1991 ). Stochastic finite elements: A spectral approach. Springer, Verlag New York. https://doi.org/10.1007/978‐1‐4612‐3094‐6; Gharamti, M. E., Hoteit, I., & Valstar, J. ( 2013 ). Dual states estimation of a subsurface flow‐transport coupled model using ensemble Kalman filtering. Advances in Water Resources, 60, 75 – 88. https://doi.org/10.1016/j.advwatres.2013.07.011; Ghiocel, D. M., & Ghanem, R. G. ( 2002 ). Stochastic finite‐element analysis of seismic soil‐structure interaction. Journal of Engineering Mechanics, 128 ( 1 ), 66 – 77. https://doi.org/10.1061/(asce)0733‐9399(2002)128:1(66); Giannakis, D., & Majda, A. J. ( 2012 ). Quantifying the predictive skill in long‐range forecasting. Part II: Model error in coarse‐grained Markov models with application to ocean‐circulation regimes, Journal of Climate, 25 ( 6 ), 1814 – 1826. https://doi.org/10.1175/jcli‐d‐11‐00110.1; He, M., Hogue, T. S., Margulis, S. A., & Franz, K. J. ( 2012 ). An integrated uncertainty and ensemble‐based data assimilation approach for improved operational streamflow predictions. Hydrology and Earth System Sciences, 16 ( 3 ), 815 – 831. https://doi.org/10.5194/hess‐16‐815‐2012; Helton, J. C., & Davis, F. J. ( 2003 ). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81 ( 1 ), 23 – 69. https://doi.org/10.1016/S0951‐8320(03)00058‐9; Heo, K.‐Y., Ha, K.‐J., Yun, K.‐S., Lee, S.‐S., Kim, H.‐J., & Wang, B. ( 2014 ). Methods for uncertainty assessment of climate models and model predictions over East Asia. International Journal of Climatology, 34 ( 2 ), 377 – 390. https://doi.org/10.1002/joc.3692; Hossain, F., & Anagnostou, E. N. ( 2005 ). Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncertainty analyses of hydrologic models. Computers & Geosciences, 31 ( 4 ), 497 – 512. https://doi.org/10.1016/j.cageo.2004.11.001; Houtekamer, P. L., & Zhang, F. ( 2016 ). Review of the ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review, 144 ( 12 ), 4489 – 4532. https://doi.org/10.1175/mwr‐d‐15‐0440.1; Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E. ( 2010 ). Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resources Research, 46, W09521. https://doi.org/10.1029/2009wr008611; Jin, X., Xu, C.‐Y., Zhang, Q., & Singh, V. P. ( 2010 ). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383 ( 3‐4 ), 147 – 155. https://doi.org/10.1016/j.jhydrol.2009.12.028; Kim, J., Dwelle, M. C., Kampf, S. K., Fatichi, S., & Ivanov, V. Y. ( 2016 ). On the non‐uniqueness of the hydro‐geomorphic responses in a zero‐order catchment with respect to soil moisture. Advances in Water Resources, 92, 73 – 89. https://doi.org/10.1016/j.advwatres.2016.03.019; Kim, J., & Ivanov, V. Y. ( 2014 ). On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield. Water Resources Research, 50, 1025 – 1045. https://doi.org/10.1002/2013wr014580; Kim, J., & Ivanov, V. Y. ( 2015 ). A holistic, multi‐scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer‐scale watershed dynamics. Journal of Hydrology, 522, 645 – 660. https://doi.org/10.1016/j.jhydrol.2015.01.025; Kim, J., Ivanov, V. Y., & Fatichi, S. ( 2016a ). Environmental stochasticity controls soil erosion variability. Scientific Reports, 6, 22065. https://doi.org/10.1038/srep22065; Kim, J., Ivanov, V. Y., & Fatichi, S. ( 2016b ). Soil erosion assessment—Mind the gap. Geophysical Research Letters, 43, 12,446 – 412,456. https://doi.org/10.1002/2016gl071480; Kim, J., Tanveer, M. E., & Bae, D.‐H. ( 2018 ). Quantifying climate internal variability using an hourly ensemble generator over South Korea. Stochastic Environmental Research and Risk Assessment, 32 ( 11 ), 3037 – 3051. https://doi.org/10.1007/s00477‐018‐1607‐0; Kitanidis, P. K., & Bras, R. L. ( 1980 ). Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty, Water Resources Research, 16 ( 6 ), 1025 – 1033. https://doi.org/10.1029/WR016i006p01025; Kleeman, R. ( 2002 ). Measuring dynamical prediction utility using relative entropy, Journal of the Atmospheric Sciences, 59 (13), 2057‐2072, doi:10.1175/1520‐0469(2002)059 < 2057:mdpuur>2.0.co;2.; Kullback, S. ( 1997 ). Information theory and statistics. North Chelmsford, MA: Courier Corporation.; Kullback, S., & Leibler, R. A. ( 1951 ). On information and sufficiency. The Annals of Mathematical Statistics, 22 ( 1 ), 79 – 86. https://doi.org/10.1214/aoms/1177729694; Lafaysse, M., Hingray, B., Mezghani, A., Gailhard, J., & Terray, L. ( 2014 ). Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resources Research, 50, 3317 – 3341. https://doi.org/10.1002/2013wr014897; Le Maı̂tre, O. P., Reagan, M. T., Najm, H. N., Ghanem, R. G., & Knio, O. M. ( 2002 ). A stochastic projection method for fluid flow. Journal of Computational Physics, 181 ( 1 ), 9 – 44. https://doi.org/10.1006/jcph.2002.7104; Li, Y., Ryu, D., Western, A. W., Wang, Q. J., Robertson, D. E., & Crow, W. T. ( 2014 ). An integrated error parameter estimation and lag‐aware data assimilation scheme for real‐time flood forecasting. Journal of Hydrology, 519, 2722 – 2736. https://doi.org/10.1016/j.jhydrol.2014.08.009; Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H., Seo, D. J., Schwanenberg, D., Smith, P., Van Dijk, A. I., & Van Velzen, N. ( 2012 ). Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16 ( 10 ), 3863 – 3887. https://doi.org/10.5194/hess‐16‐3863‐2012; Madsen, H. ( 2000 ). Automatic calibration of a conceptual rainfall‐runoff model using multiple objectives. Journal of Hydrology, 235 ( 3‐4 ), 276 – 288. https://doi.org/10.1016/s0022‐1694(00)00279‐1; Madsen, H., & Skotner, C. ( 2005 ). Adaptive state updating in real‐time river flow forecasting—A combined filtering and error forecasting procedure. Journal of Hydrology, 308 ( 1‐4 ), 302 – 312. https://doi.org/10.1016/j.jhydrol.2004.10.030; Marelli, S., & Sudret, B. ( 2017 ). UQLab user manual—Polynomial chaos expansions Rep. Safety & Uncertainty Quantification, ETH Zurich: Chair of Risk.; McKay, M. D., Beckman, R. J., & Conover, W. J. ( 1979 ). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21 ( 2 ), 239. https://doi.org/10.2307/1268522; McKenna, S. A., Doherty, J., & Hart, D. B. ( 2003 ). Non‐uniqueness of inverse transmissivity field calibration and predictive transport modeling. Journal of Hydrology, 281 ( 4 ), 265 – 280. https://doi.org/10.1016/s0022‐1694(03)00194‐x; Mendoza, P. A., McPhee, J., & Vargas, X. ( 2012 ). Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment. Water Resources Research, 48, W09532. https://doi.org/10.1029/2011wr011089; Meng, J., & Li, H. ( 2018 ). Uncertainty quantification for subsurface flow and transport: Coping with nonlinearity/irregularity via polynomial chaos surrogate and machine learning. Water Resources Research. https://doi.org/10.1029/2018wr022676; Mockler, E. M., Chun, K. P., Sapriza‐Azuri, G., Bruen, M., & Wheater, H. S. ( 2016 ). Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations. Advances in Water Resources, 97, 299 – 313. https://doi.org/10.1016/j.advwatres.2016.10.008; Mondal, A., & Mujumdar, P. P. ( 2012 ). On the basin‐scale detection and attribution of human‐induced climate change in monsoon precipitation and streamflow. Water Resources Research, 48. https://doi.org/10.1029/2011wr011468; Moradkhani, H., DeChant, C. M., & Sorooshian, S. ( 2012 ). Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method. Water Resources Research, 48 ( 12 ). https://doi.org/10.1029/2012wr012144; Moradkhani, H., Hsu, K.‐L., Gupta, H., & Sorooshian, S. ( 2005 ). Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41. https://doi.org/10.1029/2004WR003604; Moradkhani, H., & Sorooshian, S. ( 2008 ). General review of rainfall‐runoff modeling: Model calibration, data assimilation, and uncertainty analysis. In S. Sorooshian, K.‐L. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia, & G. Visconti (Eds.), Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrologic Models (pp. 1 – 24 ). Berlin: Springer. https://doi.org/10.1007/978‐3‐540‐77843‐1_1; Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R. ( 2005 ). Dual state‐parameter estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources, 28 ( 2 ), 135 – 147. https://doi.org/10.1016/j.advwatres.2004.09.002; Nga, P. H., Takara, K., & Son, N. H. ( 2015 ). Flood hazard impact analysis in the downstream of Vu Gia‐Thu Bon River System, Quang Nam Province, Central Vietnam. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 71 ( 4 ), I_157 – I_162. https://doi.org/10.2208/jscejhe.71.I_157; Nielsen, S. A., & Hansen, E. ( 1973 ). Numerical simulation of the rainfall‐runoff process on a daily basis. Hydrology Research, 4 ( 3 ), 171 – 190.; Nikiema, O., & Laprise, R. ( 2011 ). Budget study of the internal variability in ensemble simulations of the Canadian Regional Climate Model at the seasonal scale. Journal of Geophysical Research, 116 ( D16 ). https://doi.org/10.1029/2011jd015841; O’Brien, R. J., Misstear, B. D., Gill, L. W., Deakin, J. L., & Flynn, R. ( 2013 ). Developing an integrated hydrograph separation and lumped modelling approach to quantifying hydrological pathways in Irish river catchments. Journal of Hydrology, 486, 259 – 270. https://doi.org/10.1016/j.jhydrol.2013.01.034; Parno, M., Davis, A., & Conrad, P. n.d. MIT Uncertainty Quantification (MUQ) library, edited.; Pokhrel, P., Gupta, H. V., & Wagener, T. ( 2008 ). A spatial regularization approach to parameter estimation for a distributed watershed model. Water Resources Research, 44. https://doi.org/10.1029/2007wr006615; Saltelli, A. ( 2002 ). Sensitivity analysis for importance assessment. Risk Analysis, 22 ( 3 ), 579 – 590. https://doi.org/10.1111/0272‐4332.00040; Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., & Thornton, P. ( 2014 ). Dimensionality reduction for complex models via Bayesian compressive sensing. International Journal for Uncertainty Quantification, 4 ( 1 ), 63 – 93. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821; Sene, K. ( 2008 ). Flood warning, forecasting and emergency response. Springer Science & Business Media. https://doi.org/10.1007/978‐3‐540‐77853‐0; Shukla, J., DelSole, T., Fennessy, M., Kinter, J., & Paolino, D. ( 2006 ). Climate model fidelity and projections of climate change. Geophysical Research Letters, 33. https://doi.org/10.1029/2005gl025579; Sobol’, I. M. ( 2001 ). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55 ( 1‐3 ), 271 – 280. https://doi.org/10.1016/s0378‐4754(00)00270‐6; Sochala, P., & Le Maître, O. P. ( 2013 ). Polynomial Chaos expansion for subsurface flows with uncertain soil parameters. Advances in Water Resources, 62, 139 – 154. https://doi.org/10.1016/j.advwatres.2013.10.003; Sudret, B. ( 2007 ). Uncertainty propagation and sensitivity analysis in mechanical models. Contributions to structural reliability and stochastic spectral methods. Habilitation thesis: Universite Blaise Pascal, Clermont‐Ferrand, France.; Sudret, B. ( 2008 ). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93 ( 7 ), 964 – 979. https://doi.org/10.1016/j.ress.2007.04.002; Tang, Y., Reed, P., van Werkhoven, K., & Wagener, T. ( 2007 ). Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis. Water Resources Research, 43 ( 6 ). https://doi.org/10.1029/2006wr005813

4
Academic Journal

File Description: application/pdf

Relation: Calonico, Sebastian; Cattaneo, Matias D.; Titiunik, Rocio (2014). "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs." Econometrica 82(6): 2295-2326.; http://hdl.handle.net/2027.42/109857; Econometrica; Lee, D. S., and T. Lemieux ( 2010 ): “ Regression Discontinuity Designs in Economics,” Journal of Economic Literature, 48 ( 2 ), 281 – 355. 10.1257/jel.48.2.281; DiNardo, J., and D. S. Lee ( 2011 ): “ Program Evaluation and Research Designs,” in Handbook of Labor Economics, Vol. 4A, ed. by O. Ashenfelter and D. Card. New York: Elsevier Science B.V., 463 – 536.; Dong, Y. ( 2014 ): “ Jumpy or Kinky? Regression Discontinuity Without the Discontinuity,” Working Paper, UC‐Irvine.; Fan, J., and I. Gijbels ( 1996 ): Local Polynomial Modelling and Its Applications. New York: Chapman & Hall/CRC.; Frandsen, B., M. Frölich, and B. Melly ( 2012 ): “ Quantile Treatments Effects in the Regression Discontinuity Design,” Journal of Econometrics, 168 ( 2 ), 382 – 395. 10.1016/j.jeconom.2012.02.004; Hahn, J., P. Todd, and W. van der Klaauw ( 2001 ): “ Identification and Estimation of Treatment Effects With a Regression‐Discontinuity Design,” Econometrica, 69 ( 1 ), 201 – 209. 10.1111/1468‐0262.00183; Horowitz, J. L. ( 2001 ): “ The Bootstrap,” in Handbook of Econometrics, Vol. V, ed. by J. J. Heckman and E. Leamer. New York: Elsevier Science B.V., 3159 – 3228. 10.1016/S1573‐4412(01)05005‐X; Ichimura, H., and P. E. Todd ( 2007 ): “ Implementing Nonparametric and Semiparametric Estimators,” in Handbook of Econometrics, Vol. 6B, ed. by J. J. Heckman and E. E. Leamer. New York: Elsevier Science B.V., 5369 – 5468.; Imbens, G., and T. Lemieux ( 2008 ): “ Regression Discontinuity Designs: A Guide to Practice,” Journal of Econometrics, 142 ( 2 ), 615 – 635. 10.1016/j.jeconom.2007.05.001; Imbens, G. W., and K. Kalyanaraman ( 2012 ): “ Optimal Bandwidth Choice for the Regression Discontinuity Estimator,” Review of Economic Studies, 79 ( 3 ), 933 – 959. 10.1093/restud/rdr043; Keele, L. J., and R. Titiunik ( 2014 ): “ Geographic Boundaries as Regression Discontinuities,” Political Analysis (forthcoming).; Lee, D. S. ( 2008 ): “ Randomized Experiments From Non‐Random Selection in U.S. House Elections,” Journal of Econometrics, 142 ( 2 ), 675 – 697. 10.1016/j.jeconom.2007.05.004; Lee, D. S., and D. Card ( 2008 ): “ Regression Discontinuity Inference With Specification Error,” Journal of Econometrics, 142 ( 2 ), 655 – 674. 10.1016/j.jeconom.2007.05.003; Li, K.‐C. ( 1987 ): “ Asymptotic Optimality for C p, C L, Cross‐Validation and Generalized Cross‐Validation: Discrete Index Set,” The Annals of Statistics, 15 ( 3 ), 958 – 975. 10.1214/aos/1176350486; Ludwig, J., and D. L. Miller ( 2007 ): “ Does Head Start Improve Children's Life Chances? Evidence From a Regression Discontinuity Design,” Quarterly Journal of Economics, 122 ( 1 ), 159 – 208. 10.1162/qjec.122.1.159; Marmer, V., D. Feir, and T. Lemieux ( 2014 ): “ Weak Identification in Fuzzy Regression Discontinuity Designs,” Working Paper, University of British Columbia.; McCrary, J. ( 2008 ): “ Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test,” Journal of Econometrics, 142 ( 2 ), 698 – 714. 10.1016/j.jeconom.2007.05.005; Otsu, T., K.‐L. Xu, and Y. Matsushita ( 2014 ): “ Empirical Likelihood for Regression Discontinuity Design,” Journal of Econometrics (forthcoming).; Porter, J. ( 2003 ): “ Estimation in the Regression Discontinuity Model,” Working Paper, University of Wisconsin.; Thistlethwaite, D. L., and D. T. Campbell ( 1960 ): “ Regression‐Discontinuity Analysis: An Alternative to the Ex‐Post Facto Experiment,” Journal of Educational Psychology, 51 ( 6 ), 309 – 317. 10.1037/h0044319; van der Klaauw, W. ( 2008 ): “ Regression‐Discontinuity Analysis: A Survey of Recent Developments in Economics,” Labour, 22 ( 2 ), 219 – 245. 10.1111/j.1467‐9914.2008.00419.x; Wand, M. P., and M. C. Jones ( 1995 ): Kernel Smoothing. Boca Raton, FL: Chapman & Hall/CRC. 10.1007/978‐1‐4899‐4493‐1; Abadie, A., and G. W. Imbens ( 2006 ): “ Large Sample Properties of Matching Estimators for Average Treatment Effects,” Econometrica, 74 ( 1 ), 235 – 267. 10.1111/j.1468‐0262.2006.00655.x; Abadie, A., and G. W. Imbens ( 2010 ): “ Estimation of the Conditional Variance in Paired Experiments,” Annales d'Économie et de Statistique, 91 ( 1 ), 175 – 187.; Calonico, S., M. D. Cattaneo, and M. H. Farrell ( 2014 ): “ On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Estimation,” Working Paper, University of Michigan.; Calonico, S., M. D. Cattaneo, and R. Titiunik ( 2014a ): “ Optimal Data‐Driven Regression Discontinuity Plots,” Working Paper, University of Michigan.; Calonico, S., M. D. Cattaneo, and R. Titiunik ( 2014b ): “ Robust Data‐Driven Inference in the Regression‐Discontinuity Design,” Stata Journal (forthcoming).; Calonico, S., M. D. Cattaneo, and R. Titiunik ( 2014c ): “ Supplement to ‘Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs’,” Econometrica Supplemental Material, 82, http://dx.doi.org/10.3982/ECTA11757.; Calonico, S., M. D. Cattaneo, and R. Titiunik ( 2014d ): “ rdrobust: An R Package for Robust Inference in Regression‐Discontinuity Designs,” Working Paper, University of Michigan.; Card, D., D. S. Lee, Z. Pei, and A. Weber ( 2014 ): “ Inference on Causal Effects in a Generalized Regression Kink Design,” Working Paper, UC‐Berkeley.; Cattaneo, M. D., B. Frandsen, and R. Titiunik ( 2014 ): “ Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate,” Journal of Causal Inference (forthcoming).; Cheng, M.‐Y., J. Fan, and J. S. Marron ( 1997 ): “ On Automatic Boundary Corrections,” The Annals of Statistics, 25 ( 4 ), 1691 – 1708. 10.1214/aos/1031594737

5
Dissertation/ Thesis

Authors: Quinlan, Eamon

Contributors: Smith, Karen E, Tappenden, James P, Bhatt, Bhargav, Mustata, Mircea Immanuel, Takagi, Shunsuke

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/169620; https://dx.doi.org/10.7302/2665; orcid:0000-0002-3282-2928; Quinlan, Eamon; 0000-0002-3282-2928

7
Academic Journal

Authors: Barvinok

Contributors: Department of Mathematics University of Michigan Ann Arbor, MI 48109-1109, USA barvinok@math.lsa.umich.edu, US, Ann Arbor

File Description: 149154 bytes; 3115 bytes; application/pdf; text/plain

Relation: Barvinok,; (2002). "Estimating L ∞ Norms by L 2k Norms for Functions on Orbits." Foundations of Computational Mathematics 2(4): 393-412.; https://hdl.handle.net/2027.42/41872; http://dx.doi.org/10.1007/s102080010031; Foundations of Computational Mathematics

8
Academic Journal

File Description: application/pdf

Relation: James, Kevin R.; Dowling, David R. (2011). "Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L)." The Journal of the Acoustical Society of America, 129(2): 589.; https://hdl.handle.net/2027.42/98654; The Journal of the Acoustical Society of America

9
Academic Journal

Contributors: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109â 5842

File Description: application/pdf

Relation: Way, Ted W.; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang‐ping (2010). "Effect of finite sample size on feature selection and classification: A simulation study." Medical Physics 37(2): 907-920.; https://hdl.handle.net/2027.42/134839; Medical Physics; H. H. Barrett, C. K. Abbey, and E. Clarkson, â Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihoodâ generating functions,â J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 1520 â 1535 ( 1998 ). 10.1364/JOSAA.15.001520 --> 1084-7529 -->; B. Sahiner, H. P. Chan, and L. Hadjiiski, â Classifier performance prediction for computerâ aided diagnosis using a limited data set,â Med. Phys. MPHYA6 --> 0094-2405 --> 35, 1559 â 1570 ( 2008 ). 10.1118/1.2868757 -->; B. Sahiner, H. P. Chan, and L. M. Hadjiiski, â Classifier performance estimation under the constraint of a finite sample size: Resampling schemes applied to neural network classifiers,â Neural Networks NNETEB --> 0893-6080 --> 21, 476 â 483 ( 2008 ). 10.1016/j.neunet.2007.12.012 -->; Q. Li and K. Doi, â Analysis and minimization of overtraining effect in ruleâ based classifiers for computerâ aided diagnosis,â Med. Phys. MPHYA6 --> 0094-2405 --> 33, 320 â 328 ( 2006 ). 10.1118/1.1999126 -->; Q. Li and K. Doi, â Comparison of typical evaluation methods for computerâ aided diagnostic schemes: Monte Carlo simulation study,â Med. Phys. MPHYA6 --> 0094-2405 --> 34, 871 â 876 ( 2007 ). 10.1118/1.2437130 -->; S. V. Beiden, M. A. Maloof, and R. F. Wagner, â A general model for finiteâ sample effects in training and testing of competing classifiers,â IEEE Trans. Pattern Anal. Mach. Intell. ITPIDJ --> 0162-8828 --> 25, 1561 â 1569 ( 2003 ). 10.1109/TPAMI.2003.1251149 -->; A. Jain and D. Zongker, â Feature selection: Evaluation, application, and small sample size performance,â IEEE Trans. Pattern Anal. Mach. Intell. ITPIDJ --> 0162-8828 --> 19, 153 â 158 ( 1997 ). 10.1109/34.574797 -->; P. Pudil, J. Novovicová, and J. Kittler, â Floating search methods in feature selection,â Pattern Recogn. Lett. PRLEDG --> 0167-8655 --> 15, 1119 â 1125 ( 1994 ). 10.1016/0167-8655(94)90127-9 -->; M. Kudo and J. Sklansky, â Comparison of algorithms that select features for pattern classifiers,â Pattern Recogn. PTNRA8 --> 0031-3203 --> 33, 25 â 41 ( 2000 ). 10.1016/S0031-3203(99)00041-2 -->; C. Sima and E. R. Dougherty, â What should be expected from feature selection in smallâ sample settings,â Bioinformatics BOINFP --> 1367-4803 --> 22, 2430 â 2436 ( 2006 ). 10.1093/bioinformatics/btl407 -->; J. P. Hua, W. D. Tembe, and E. R. Dougherty, â Performance of featureâ selection methods in the classification of highâ dimension data,â Pattern Recogn. PTNRA8 --> 0031-3203 --> 42, 409 â 424 ( 2009 ). 10.1016/j.patcog.2008.08.001 -->; J. W. Lee, J. B. Lee, M. Park, and S. H. Song, â An extensive comparison of recent classification tools applied to microarray data,â Comput. Stat. Data Anal. CSDADW --> 0167-9473 --> 48, 869 â 885 ( 2005 ). 10.1016/j.csda.2004.03.017 -->; X. G. Zhang, X. Lu, Q. Shi, X. Q. Xu, H. C. E. Leung, L. N. Harris, J. D. Iglehart, A. Miron, J. S. Liu, and W. H. Wong, â Recursive SVM feature selection and sample classification for massâ spectrometry and microarray data,â BMC Bioinf. BBMIC4 --> 1471-2105 --> 7, 13 ( 2006 ). 10.1186/1471-2105-7-13 -->; J. G. Dy and C. E. Brodley, â Feature selection for unsupervised learning,â J. Mach. Learn. Res. 1532-4435 --> 5, 845 â 889 ( 2004 ).; S. Krishnan, K. Samudravijaya, and P. V. S. Rao, â Feature selection for pattern classification with Gaussian mixture models: A new objective criterion,â Pattern Recogn. Lett. PRLEDG --> 0167-8655 --> 17, 803 â 809 ( 1996 ). 10.1016/0167-8655(96)00047-5 -->; R. Kohavi and G. H. John, â Wrappers for feature subset selection,â Artif. Intell. AINTBB --> 0004-3702 --> 97, 273 â 324 ( 1997 ). 10.1016/S0004-3702(97)00043-X -->; L. Yu and H. Liu, â Efficient feature selection via analysis of relevance and redundancy,â J. Mach. Learn. Res. 1532-4435 --> 5, 1205 â 1224 ( 2004 ).; K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. ( Academic, New York, 1990 ).; R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis ( Wiley, New York, 1973 ).; D. J. Hand, Discrimination and Classification ( Wiley, New York, 1981 ).; T. W. Way, L. M. Hadjiiski, B. Sahiner, H. -P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot, and C. Zhou, â Computerâ aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours,â Med. Phys. MPHYA6 --> 0094-2405 --> 33, 2323 â 2337 ( 2006 ). 10.1118/1.2207129 -->; M. M. Galloway, â Texture classification using gray level run lengths,â Comput. Graph. Image Process. CGIPBG --> 0146-664X --> 4, 172 â 179 ( 1975 ). 10.1016/S0146-664X(75)80008-6 -->; B. R. Dasarathy and E. B. Holder, â Image characterizations based on joint grayâ level runâ length distributions,â Pattern Recogn. Lett. PRLEDG --> 0167-8655 --> 12, 497 â 502 ( 1991 ). 10.1016/0167-8655(91)80014-2 -->; T. Marill and D. Green, â On the effectiveness of receptors in recognition systems,â IEEE Trans. Inf. Theory IETTAW --> 0018-9448 --> 9, 11 â 17 ( 1963 ). 10.1109/TIT.1963.1057810 -->; A. W. Whitney, â A direct method of nonparametric measurement selection,â IEEE Trans. Comput. ITCOB4 --> 0018-9340 --> C-20, 1100 â 1103 ( 1971 ). 10.1109/T-C.1971.223410 -->; N. R. Draper, Applied Regression Analysis ( Wiley, New York, 1998 ).; M. M. Tatsuoka, Multivariate Analysis, Techniques for Educational and Psychological Research, 2nd ed. ( Macmillan, New York, 1988 ).; M. J. Norusis, SPSS for Windows Release 6 Professional Statistics ( SPSS, Chicago, 1993 ).; S. D. Stearns, â On selecting features for pattern classifiers,â Third International Conference on Pattern Recognition, Coronado, CA, 1976, pp. 71 â 75.; A. K. Jain, R. P. W. Duin, and J. Mao, â Statistical pattern recognition: A review,â IEEE Trans. Pattern Anal. Mach. Intell. ITPIDJ --> 0162-8828 --> 22, 4 â 37 ( 2000 ). 10.1109/34.824819 -->; P. A. Lachenbruch, Discriminant Analysis ( Hafner, New York, 1975 ).; C. J. C. Burges, â A tutorial on support vector machines for pattern recognition,â Data Min. Knowl. Discov. DMKDFD --> 1384-5810 --> 2, 121 â 167 ( 1998 ). 10.1023/A:1009715923555 -->; Y. Arzhaeva, M. Prokop, D. M. J. Tax, P. A. De Jong, C. M. Schaeferâ Prokop, and B. van Ginneken, â Computerâ aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography,â Med. Phys. MPHYA6 --> 0094-2405 --> 34, 4798 â 4809 ( 2007 ). 10.1118/1.2795672 -->; P. Campadelli, E. Casiraghi, and D. Artioli, â A fully automated method for lung nodule detection from posteroâ anterior chest radiographs,â IEEE Trans. Med. Imaging ITMID4 --> 0278-0062 --> 25, 1588 â 1603 ( 2006 ). 10.1109/TMI.2006.884198 -->; A. K. Jerebko, J. D. Malley, M. Franaszek, and R. M. Summers, â Support vector machines committee classification method for computerâ aided polyp detection in CT colonography,â Acad. Radiol. 1076-6332 --> 12, 479 â 486 ( 2005 ). 10.1016/j.acra.2004.04.024 -->; S. Ruping, â Incremental learning with support vector machines,â Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 641 â 642.; O. Chapelle, P. Haffner, and V. N. Vapnik, â Support vector machines for histogramâ based image classification,â IEEE Trans. Neural Netw. ITNNEP --> 1045-9227 --> 10, 1055 â 1064 ( 1999 ). 10.1109/72.788646 -->; H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, â Classifier design for computerâ aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers,â Med. Phys. MPHYA6 --> 0094-2405 --> 26, 2654 â 2668 ( 1999 ). 10.1118/1.598805 -->; B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. M. Hadjiiski, â Feature selection and classifier performance in computerâ aided diagnosis: The effect of finite sample size,â Med. Phys. MPHYA6 --> 0094-2405 --> 27, 1509 â 1522 ( 2000 ). 10.1118/1.599017 -->

11
Dissertation/ Thesis

Authors: Odesky, Andrew

Contributors: Zieve, Michael E, Larsen, Finn, Ho, Wei, Prasanna, Kartik

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/163231; orcid:0000-0003-1068-7013; O’Desky, Andrew; 0000-0003-1068-7013

12
Dissertation/ Thesis

Authors: Olson, Matthew

Contributors: Doering, Charles R, Schultz, William W, Alben, Silas D, Bloch, Anthony M, Miller, Peter D

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/162943; orcid:0000-0003-0898-1993; Olson, Matt; 0000-0003-0898-1993

13
Dissertation/ Thesis

Authors: Du, Lara Yue

Contributors: Jonsson, Mattias, Wooley, Trevor, Akhoury, Ratindranath, Lagarias, Jeffrey C, Lande, Elaine

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/162876; orcid:0000-0001-6749-4867; Du, Lara; 0000-0001-6749-4867

14
Academic Journal

Contributors: Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109-1003, Department of Mathematics, Michigan State University, East Lansing, MI, 48824-1027, Ann Arbor

File Description: 146033 bytes; 3115 bytes; application/pdf; text/plain

Relation: Blass, Andreas; Sagan, Bruce E.; (1998). "Characteristic and Ehrhart Polynomials." Journal of Algebraic Combinatorics 7(2): 115-126.; https://hdl.handle.net/2027.42/46284; http://dx.doi.org/10.1023/A:1008646303921; Journal of Algebraic Combinatorics

15
Academic Journal

Contributors: University of Michigan, Ann, Arbor, MI, 48109-1003, U.S.A, Binghamton University, Binghamton, NY, 13902-6000, U.S.A, Ann Arbor

File Description: 272549 bytes; 3115 bytes; application/pdf; text/plain

Relation: Hanlon, Phil; Zaslavsky, Thomas; (1997). "Tractable Partially Ordered Sets Derived from Root Systems and Biased Graphs." Order 14(3): 229-257.; https://hdl.handle.net/2027.42/43341; http://dx.doi.org/10.1023/A:1006086805922; Order

16
Academic Journal

Contributors: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA, Ann Arbor

File Description: 257913 bytes; 3115 bytes; application/pdf; text/plain

Relation: Barvinok, Alexander; (2006). "Integration and Optimization of Multivariate Polynomials by Restriction onto a Random Subspace." Foundations of Computational Mathematics (): -.; https://hdl.handle.net/2027.42/45853; http://dx.doi.org/10.1007/s10208-005-0178-x; Foundations of Computational Mathematics

17
Academic Journal

Authors: Boyd, John P.

Contributors: Department of Atmospheric, Oceanic and Space Science and Laboratory for Scientific Computation, University of Michigan, 2455 Hayward Avenue, Ann Arbor, MI, 48109, USA, Ann Arbor

File Description: 124933 bytes; 3115 bytes; application/pdf; text/plain

Relation: Boyd, John P.; (2005). "Chebyshev Solution of the Nearly-Singular One-Dimensional Helmholtz Equation and Related Singular Perturbation Equations: Multiple Scale Series and the Boundary Layer Rule-of-Thumb." Numerical Algorithms 38(1): 197-207.; https://hdl.handle.net/2027.42/45436; http://dx.doi.org/10.1007/s11075-004-2865-0; Numerical Algorithms

18
Academic Journal

Authors: Bini, Gilberto

Contributors: Department of Mathematics, University of Michigan, 525 East University Ave., Ann Arbor, MI, 48109, USA, Ann Arbor

File Description: 107575 bytes; 3115 bytes; application/pdf; text/plain

Relation: Bini, G.; (2002). "A Combinatorial Algorithm Related to the Geometry of the Moduli Space of Pointed Curves." Journal of Algebraic Combinatorics 15(3): 211-221.; https://hdl.handle.net/2027.42/46152; http://dx.doi.org/10.1023/A:1015025306777; Journal of Algebraic Combinatorics

20
Academic Journal

Contributors: Center for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, Michigan 48109-1090, Division of Ichthyology, Natural History Museum, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7561

File Description: 2679461 bytes; 3110 bytes; application/pdf; text/plain

Relation: Rhode, Kristina M.; Pappas, Janice L.; Stoermer, Eugene F. (2001). "QUANTITATIVE ANALYSIS OF SHAPE VARIATION IN TYPE AND MODERN POPULATIONS OF MERIDION (BACILLARIOPHYCEAE)." Journal of Phycology 37(1): 175-183.; http://hdl.handle.net/2027.42/65187; Journal of Phycology; Afifi, A. A. & Clark, V. 1996. Computer-Aided Multivariate Analysis. Chapman & Hall, London, 455 pp.; Anonymous. 1975. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwigia Beiheft 53 : 323 – 54.; Barber, H.G. & Haworth, E. Y. 1981. A Guide to the Morphology of the Diatom Frustule. Titus Wilson & Son, Kendal, UK, 122 pp.; Bradbury, J. P. & Krebs, W. N. 1982. Neogene and quaternary lacustrine diatoms of the western Snake River Basin Idaho–Oregon, USA. Acta Biol. Acad. Scientiar. Hung. 25 : 97 – 122.; Cohen, J. 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20 : 37 – 46.; Cumming, B. F., Wilson, S. E., Hall, R. I. & Smol, J. P. 1995. Diatoms from British Columbia (Canada) Lakes and Their Relationship to Salinity, Nutrients and Other Limnological Variables. J. Cramer, Berlin, Stuttgart 207 pp.; Droop, S. J. M. 1994. Morphological variation in Diploneis smithii and D. fusca (Bacillariophyceae). Arch. Protist. 144 : 249 – 70.; Foged, N. 1964. Freshwater Diatoms from Spitsbergen. Universitetsforlaget, Tromso/Oslo, 203 pp.; Foged, N. 1977. Freshwater Diatoms in Ireland. Bibliotheca Phycologica. J. Cramer, Vaduz, 221 pp.; Foged, N. 1978. Diatoms in Eastern Australia. Bibliotheca Phycologica. J. Cramer, Vaduz, 243 pp.; Foged, N. 1979. Diatoms in New Zealand, the North Island. Bibliotheca Phycologica. J. Cramer, Vaduz, 225 pp.; Foged, N. 1980. Diatoms in Öland, Sweden. Bibliotheca Phycologica. J. Cramer, Vaduz, 193 pp.; Foged, N. 1981. Diatoms in Alaska. Bibliotheca Phycologica. J. Cramer, Vaduz, 317 pp.; Foged, N. 1982. Diatoms in Bornholm, Denmark. Bibliotheca Phycologica. J. Cramer, Vaduz, 175 pp.; Fukushima, H., Ko-Bayashi, T., Terao, K. & Yoshitake, S. 1988. Morphological variability of Diatoma vulgare Bory var. grande. In Round, F. E. [Ed.] Proceedings of the Ninth International Diatom Symposium. Biopress Ltd., Bristol, pp. 377–89.; Geitler, L. 1932. Der Formwechsel der pennaten Diatomeen (Kieselalgen). Arch. Protist. 78 : 1 – 226.; Geitler, L. 1971. Die inaquale Teilung bei der Bildung der Innenschalen von Meridion circulare. Österreich. Botan. Zeitschr. 119 : 442 – 6.; Geitler, L. 1975. Formwechsel, sippenspezifischer Paarungsmodus und Systematik bei einigen pennaten Diatomeen. Plant System. Evol. 124 : 7 – 30.; Germain, H. 1981. Flore des DiatomÉes eaux douces et saumtres. SociÉtÉ Nouvelle des Editions BoubÉe, Paris, 444 pp.; Green, P. E. & Carroll, J. D. 1978. Analyzing Multivariate Data. The Dryden Press, Hinsdale, 519 pp.; Hendey, N. I. 1964. An Introductory Account of the Smaller Algae of British Coastal Waters. Part V. Bacillariophyceae (Diatoms). Fisheries Investigations ser. IV. HMSO London, 317 pp.; Hustedt, F. 1930. Bacillariophyta (Diatomeae) Die SÜsswasser-Flora Mitteleuropas. Band 10 Fischer, Jena, 920 pp.; Hustedt, F. 1938. Systematishe und Ökologishe Untersuchungen Über die Diatomeen-Flore von Java, Bali und Sumatra. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 393 pp.; Hustedt, F. 1949. SÜsswasser-Diatomeen aus dem Albert-Nationalpark in Belgisch-Kongo. In Institute des Parcs Nationals du Congo Belege. Exploration du Parc Albert, Hayez, Brussels, pp. 1 – 199.; Krammer, K. & Lange-Bertalot, H. 1997 a. SÜsswasserflora von Mitteleuropa. Bacillariophyceae. I. Teil: Naviculaceae. Gustav Fischer Verlag, Jena, 876 pp.; Krammer, K. & Lange-Bertalot, H. 1997 b. SÜsswasserflora von Mitteleuropa. Bacillariophyceae. II. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Jena, 610 pp.; Krammer, K. & Lange-Bertalot, H. 1991 a. SÜsswasserflora von Mitteleuropa. Bacillariophyceae. III. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Jena, 576 pp.; Krammer, K. & Lange-Bertalot, H. 1991 b. SÜsswasserflora von Mitteleuropa. Bacillariophyceae. IV. Teil: Achnanthaceae, Kritische ErgÄnzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fischer Verlag, Jena, 437 pp.; Krejci, M. E. & Lowe, R. L. 1987. The seasonal occurrence of macroscopic colonies of Meridion circulare (Bacillariophyceae) in a spring-fed brook. Trans. Am. Microsc. Soc. 106 : 173 – 8.; Mann, D. G. 1984. Observations on copulation in Navicula pupula and Amphora ovalis in relation to the nature of diatom species. Ann. Bot. 54 : 429 – 38.; Mann, D. G. 1989. The species concept in diatoms: evidence for morphologically distinct, sympatric gamodemes in four epipelic species. Plant System. Evol. 164 : 215 – 37.; Mann, D. G. 1994. The origins of shape and form in diatoms: the interplay between morphogenetic studies and systematics. In Ingram, D. S. & Hudson, A. [Eds.] Shape and Form in Plants and Fungi. The Linnean Society of London, London, pp. 17 – 38.; Mann, D. G., Chepurnov, V. A. & Droop, S. J. M. 1999. Sexuality, incompatibility, size variation, and preferential polyandry in natural populations and clones of Sellaphora pupula (Bacillariophyceae). J. Phycol. 35 : 152 – 70.; Mann, D. G. & Droop, S. J. M. 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336 : 19 – 32.; Mathview 2.50. 1997. Waterloo Maple Inc., Ontario.; Mayer, A. 1917. Beitrage Zur Diatomeenflora Bayerns. Part I, A. Bacillariales aus dem Fichtelgebirge und angrenzenden Gebieten. B. Bacillariales aus dem Bayrischen Walde. Denkschriften der Koniglich Baierischen Botanischen Gesellschaft in Regensburg. Bd. 13 Neue Folge (Bd. 7), p. 1–162, 12 pls. (published by Verlag der Gesellschaft, Regensberg).; Mou, D. & Stoermer, E. F. 1992. Separating Tabellaria (Bacillariophyceae) shape groups based on Fourier descriptors. J. Phycol. 28 : 386 – 95.; NIH Image 1.62. 1998. Developed at the U.S. National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/; Patrick, R. M. & Reimer, C. W. 1966. The Diatoms of the United States, Exclusive of Alaska and Hawaii. Sutter House, Lititz, 688 pp.; Ralfs, J. 1843. On the British species of Meridion and Gomphonema. Ann. Nat. Hist. 12 : 457 – 66.; Ross, R. 1983. Endemism and cosmopolitanism in the diatom flora of the East African Great Lakes. In Sims, R. W., Price, J. H. & Whalley, P. E. S. [Eds.] Evolution, Time and Space: the Emergence of the Biosphere. Academic Press, London and New York, pp. 157 – 77.; Ross, R., Cox, E. J., Karayeva, N. I., Mann, D, Paddock, T. B. B., Simonsen, R. & Sims, P. A. 1979. An amended terminology for the siliceous components of the Diatom cell. Nova Hedwigia Beiheft 64 : 513 – 33.; Schoeman, F. R. 1973. A Systematical and Ecological Study of the Diatom Flora of Lesotho with Special Reference to the Water Quality. V & R Printers, Pretoria, 355 pp.; Steinman, A. D. & Ladewski, T. B. 1987. Quantitative shape analysis of Eunotia pectinalis (Bacillariophyceae) and its application to seasonal distribution patterns. Phycologia 26 : 467 – 77.; Stoermer, E. F. & Ladewski, T. B. 1982. Quantitative analysis of shape variation in type and modern populations of Gomphoneis herculeana. Nova Hedwigia Beihefte 73 : 347 – 73.; Stoermer, E. F. & Sicko-Goad, L. 1985. A comparative ultrastructural and morphometric study of six species of the diatom genus Stephanodiscus. J. Plankton Res. 7 : 125 – 35.; Stoermer, E. F., Yu-Zao, Q. & Ladewski, T. B. 1986. A quantitative investigation of shape variation in Didymosphenia (Lyngbye) M. Schmidt (Bacillariophyta). Phycologia 25 : 494 – 502.; Theriot, E. 1987. Principal component analysis and taxonomic interpretation of environmentally related variation in silicification in Stephanodiscus (Bacillariophyceae). Br. Phycol. J. 22 : 359 – 73.; Theriot, E., HÅkansson, H. & Stoermer, E. F. 1988. Morphometric analysis of Stephanodiscus alpinus (Bacillariophyceae) and its morphology as an indicator of lake trophic status. Phycologia 27 : 485 – 93.; Theriot, E. & Ladewski, T. B. 1986. Morphometric analysis of shape of specimens from the neotype of Tabellaria flocculosa (Bacillariophyceae). Am. J. Bot. 73 : 224 – 9.; Theriot, E. & Stoermer, E. F. 1984. Principal component analysis of character variation in Stephanodiscus niagarae Ehrenb. In Mann, D. G. [Ed.] Proceedings of the Seventh International Diatom Symposium. Otto Koeltz Science Publishers, Philadelphia, pp. 97–111.; Van Heurck, H. 1885 (reprinted 1981). Synopsis des Diatomees de Belgique. Linnaeus Press, Amsterdam, Holland, 120 pp.; Van Valen, L. 1978. The statistics of variation. Evol. Theory 4 : 33 – 43.; Williams, D.M. 1985. Morphology, Taxonomy and Inter-Relationships of the Ribbed Araphid Diatoms from the Genera Diatoma and Meridion (Diatomaceae: Bacillariophyta). Bibliotheca Diatomologica, Bd. 8. J. Cramer, Vaduz, 228 pp.