Showing 1 - 9 results of 9 for search 'MESODERM' Narrow Search
7
Academic Journal

File Description: application/pdf

Relation: Abu‐issa, Radwan (2014). "Heart Fields: Spatial Polarity and Temporal Dynamics." The Anatomical Record 297(2): 175-182.; https://hdl.handle.net/2027.42/102627; The Anatomical Record; Srivastava D, Olson EN. 2000. A genetic blueprint for cardiac development. Nature 407: 221 – 226.; Smith JL, Schoenwolf GC. 1997. Neurulation: coming to closure. Trends Neurosci 11: 510 – 517.; Stalsberg H, DeHaan RL. 1969. The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19: 128.; Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM. 2007. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304: 286 – 296.; Tam PP, Parameswaran M, Kinder SJ, Weinberger RP. 1997. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124: 1631 – 1642.; van den Berg G, Abu‐Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, Ruijter JM, Kirby ML, van den Hoff MJ, Moorman AF. 2009. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104: 179 – 188.; van den Berg G, Moorman AF. 2011. Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One 6: 1 – 12.; van Wijk B, van den Berg G, Abu‐Issa R, Barnett P, van der Velden S, Schmidt M, Ruijter JM, Kirby ML, Moorman AF, van den Hoff MJ. 2009. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein‐ and fibroblast growth factor‐signaling pathways. Circ Res 105: 431 – 441.; Varner VD, Taber LA. 2012. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development 139: 1680 – 1690.; Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB. 2008. Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev Dyn 237: 3809 – 3819.; Vincent SD, Buckingham ME. 2010. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90: 1 – 41.; Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML. 2001. Conotruncal myocardium arises from a secondary heart field. Development 128: 3179 – 3188.; Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu‐Issa R, Kirby ML. 2005. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 281: 78 – 90.; Watanabe Y, Zaffran S, Kuroiwa A, Higuchi H, Ogura T, Harvey RP, Kelly RG, Buckingham M. 2012. Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2‐5, and Islet1 reveals a genetic switch for down‐regulation in the myocardium. Proc Natl Acad Sci USA 109: 18273 – 18280.; Xavier‐Neto J, Trueba SS, Stolfi A, Souza HM, Sobreira TJ, Schubert M, Castillo HA. 2012. An unauthorized biography of the second heart field and a pioneer/scaffold model for cardiac development. Curr Top Dev Biol 100: 67 – 105.; Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A. 2004. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131: 3217 – 3227.; Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ. 2000. Expression of chick Tbx‐2, Tbx‐3, and Tbx‐5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol 228: 95 – 105.; Yang X, Dormann D, Munsterberg A, Weijer CJ. 2002. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3: 425 – 437.; Yuan S, Schoenwolf GC. 2000. Islet‐1 marks the early heart rudiments and is asymmetrically expressed during early rotation of the foregut in the chick embryo. Anat Rec 260: 204 – 207.; Yue Q, Wagstaff L, Yang X, Weijer C, Münsterberg A. 2008. Wnt3a‐mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development 135: 1029 – 1037.; Abu‐Issa R, Smyth G, Smoak I, Yamamura KI, Meyers E. 2002. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129: 4613 – 4625.; Abu‐Issa R, Waldo K, Kirby ML. 2004. Heart fields: one, two or more? Dev Biol 272: 81 – 85.; Abu‐Issa R, Kirby ML. 2007. Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23: 45 – 68.; Abu‐Issa R, Kirby ML. 2008. Patterning of the heart field in the chick. Dev Biol 319: 223 – 233.; Arima Y, Miyagawa‐Tomita S, Maeda K, Asai R, Seya D, Minoux M, Rijli FM, Nishiyama K, Kim KS, Uchijima Y, Ogawa H, Kurihara Y, Kurihara H. 2012. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat Commun 3: 1267.; Bertrand N, Roux M, Ryckebüsch L, Niederreither K, Dollé P, Moon A, Capecchi M, Zaffran S. 2011. Hox genes define distinct progenitor sub‐domains within the second heart field. Dev Biol 15: 266 – 274.; Bressan M, Liu G, Mikawa T. 2013. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340: 744 – 748.; Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. 2001. A murine model of Holt‐Oram syndrome defines roles of the T‐box transcription factor Tbx5 in cardiogenesis and disease. Cell 106: 709 – 721.; Buckingham M, Meilhac S, Zaffran S. 2005. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6: 826 – 835.; Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877 – 889.; Camp E, Dietrich S, Munsterberg A. 2012. Fate mapping identifies the origin of SHF/AHF progenitors in the chick primitive streak. PLoS One 7: e51948.; Clark DC, Zhang B, Lee B, Evans IS, Lassar BA, Lee K. 2013. Evolutionary conservation of Nkx2.5 autoregulation in the second heart field, Dev Biol 374: 198 – 209.; Cui C, Cheuvront TJ, Lansford RD, Moreno‐Rodriguez RA, Schultheiss TM, Rongish BJ. 2009. Dynamic positional fate map of the primary heart‐forming region. Dev Biol 332: 212 – 222.; de Boer BA, van den Berg G, de Boer PA, Moorman AF, Ruijter JM. 2012. Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Dev Biol 368: 203 – 213.; DeHaan RL. 1965. Morphogenesis of the vertebrate heart. In: DeHaan RL, Ursprung H, editors. Organogenesis. New York: Holt, Rinehart &Winston. p 377 – 419.; de la Cruz MV, Sanchez‐Gomez C. 1998. Straight tube heart. Primitive cardiac cavities vs. primitive cardiac segments. In: de la Cruz MV, Markwald RR, editors. Living morphogenesis of the heart. Boston, Basel, Berlin: Birkhäuser. p 85 – 98.; Del Monte G, Harvey RP. 2012. An endothelial contribution to coronary vessels. Cell 151: 932 – 934.; DeRuiter MC, Poelmann RE, VanderPlas‐deVries I, Mentink MM, Gittenberger‐de Groot AC. 1992. The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol 185: 461 – 473.; Devine WP, Wythe JD, Bruneau BG. 2012. Identification and characterization of a multipotent cardiac precursor. Weinstein Cardiovascular Development Conference Abstract Book. S6.5 p 55. http://weinstein.uchicago.edu/Abstract%20Book%20Final-sm.pdf. Accessed on 4 November 2013.; Dyer L, Kirby ML. 2009. The role of secondary heart filed in cardiac development. Dev Biol 336: 137 – 144.; Fishman MC, Chien KR. 1997. Fashioning the vertebrate heart: earliest embryonic decisions. Development 124: 2099 – 2117.; Garcia‐Martinez V, Schoenwolf GC. 1993. Primitive‐streak origin of the cardiovascular system in avian embryos. Dev Biol 159: 706 – 719.; Galli D, Domínguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. 2008. Atrial myocardium derives from the posterior region of the second heart field, which acquires left‐right identity as Pitx2c is expressed. Development 135: 1157 – 1167.; Gavrilov S, Lacy L. 2013. Genetic dissection of ventral folding morphogenesis in mouse: embryonic visceral endoderm‐supplied BMP2 positions head and heart. Curr Opin Genet Dev 23: 461 – 469.; Greulich F, Rudat C, Kispert A. 2011. Mechanisms of T‐box gene function in the developing heart. Cardiovasc Res 91: 212 – 222.; Han Y, Dennis JE, Cohen‐Gould L, Bader DM, Fischman DA. 1992. Expression of sarcomeric myosin in the presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Dev Dyn 193: 257 – 265.; Harris IS, Black BL. 2010. Development of the endocardium. Pediatr Cardiol 31: 391 – 399.; Hochgreb T, Linhares VL, Menezes DC, Sampaio AC, Yan CY, Cardoso WV, Rosenthal N, Xavier‐Neto J. 2003. A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field. Development 130: 5363 – 5374.; Ilagan R, Abu‐Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, Klingensmith J, Meyers EN. 2006. Fgf8 is required for anterior heart field development. Development 133: 2435 – 2445.; Kelly RG, Brown NA, Buckingham ME. 2001. The arterial pole of the mouse heart forms from Fgf10‐expressing cells in pharyngeal mesoderm. Dev Cell 1: 435 – 440.; Kelly RG. 2012. The second heart field. Curr Top Dev Biol 100: 33 – 65.; Kinder SJ, Loebel DA, Tam PP. 2001. Allocation and early differentiation of cardiovascular progenitors in the mouse embryo. Trends Cardiovasc Med 11: 177 – 184.; Kirby ML, Hutson MR. 2010. Factors controlling cardiac neural crest cell migration. Cell Adh Migr 4: 609 – 621.; Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432: 107 – 112.; López‐Sánchez C, García‐Martínez V. 2011. Molecualr determinants of cardiac specification. Cardiovasc Res 91: 185 – 195.; Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2‐5. Genes Dev 9: 1654 – 1666.; Ma Q, Zhou B, Pu WT. 2008. Reassessment of Isl1 and Nkx2‐5 cardiac fate maps using a Gata4‐based reporter of Cre activity. Dev Biol 323: 98 – 104.; Massarwa R, Ray JH, Niswander L. 2013. Morphogenetic movements in the neural plate and neural tube: mouse. WIREs Dev Biol. in press.; Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME. 2004. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6: 685 – 698.; Mjaatvedt CH, Nakaoka T, Moreno‐Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR. 2001. The outflow tract of the heart is recruited from a novel heart‐forming field. Dev Biol 238: 97 – 109.; Moorman AF, van den Berg G, Anderson RH, Christoffels VM. 2010. Early cardiac growth and the ballooning model of cardiac chamber formation. In: Rosenthal N, Harvey RP, editors. Heart development and regeneration. London: Elsevier. p 219 – 236.; Moreno‐Rodriguez RA, Krug EL, Reyes L, Villavicencio L, Mjaatvedt CH, Markwald RR. 2006. Bidirectional fusion of the heart‐forming fields in the developing chick embryo. Dev Dyn 235: 191 – 202.; Nathan E, Monovich A, Tirosh‐Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E. 2008. The contribution of Islet1‐expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135: 647 – 657.; Patten BM. 1922. The formation of the cardiac loop in the chick. Am J Anat 30: 373 – 397.; Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham ME, Harvey RP. 2007. A Nkx2‐5/Bmp2/Smad1 negative feedback loop orchestrates cardiac progenitor cell specification and proliferation in the second heart field. Cell 128: 947 – 959.; Rana MS, Horsten NC, Tesink‐Taekema S, Lamers WH, Moorman AF, van den Hoff MJ. 2007. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 100: 1000 – 1007.; Risebro CA, Smart N, Dupays L, Breckenridge R, Mohun TJ, Riley PR. 2006. Hand1 regulatescardiomyocyte proliferation versus differentiation in the developing heart. Development 133: 4595 – 4606.; Schoenwolf GC, Garcia‐Martinez V. 1995. Primitive‐streak origin and state of commitment of cells of the cardiovascular system in avian and mammalian embryos. Cell Mol Biol Res 41: 233 – 240.

8
Dissertation/ Thesis

Contributors: Gage, Philip J., Glaser, Thomas M., Hammer, Gary D., Hitchcock, Peter F., Krull, Catherine E.

File Description: 50644542 bytes; 14175701 bytes; 1373 bytes; application/pdf; text/plain