Showing 1 - 20 results of 79 for search 'GLUCOSE' Narrow Search
1
Academic Journal

Subject Geographic: United States

File Description: Electronic-eCollection; application/pdf

Relation: https://www.ncbi.nlm.nih.gov/pubmed/34977268; https://hdl.handle.net/2027.42/174881; https://dx.doi.org/10.7302/6510; Molecular Therapy - Methods and Clinical Development; orcid:0000-0001-7302-7587; orcid:0000-0001-9169-0390; orcid:0000-0001-9862-7685; orcid:0000-0001-5161-4705; orcid:0000-0003-2357-7825; orcid:0000-0002-0041-0339; 24; 11; 19; Hirai, H; 0000-0001-7302-7587; Liang, X; 0000-0001-9169-0390; Sun, Y; 0000-0001-9862-7685; Zhang, Y; Zhang, J; 0000-0001-5161-4705; Chen, YE; 0000-0003-2357-7825; Mou, H; Zhao, Y; 0000-0002-0041-0339; Xu, J

3
Academic Journal

File Description: application/pdf

Relation: Stokes, Carmen; Wilson, Kristi Jo (2022). "Community‐Based Participatory Research partnership with faith‐based organizations to address obesity and glucose control." Public Health Nursing 39(2): 398-404.; https://hdl.handle.net/2027.42/171991; Public Health Nursing; Belone, L., Lucero, J. F., Duran, B., Baker, F. A., Chang, C., Green‐Moton, E., Kelley, M., & Wallerstein, N. ( 2014 ). Community‐based participatory research conceptual model: Community partner consultation and face validity. Qualitative Health Research, 26 ( 1 ), 117 – 135.; Amuda, A. T., & Berkowitz, A. A. ( 2019 ). Diabetes and the built environment: Evidence and policies. Current Diabetes Reports, 19 ( 35 ), 1 – 8.; Alston, J. M., Okrent, A. M., & Parks, J. C. ( 2017 ). (Eds.). U.S. food policy and obesity (pp 165 – 184 ). Public Health‐Social and Behavioral Health.; Mirkin, G. ( 2021 ). Organic foods may not be worth the extra cost. Retrieved from https://www.villages‐news.com/2021/03/04/organic‐foods‐may‐not‐be‐worth‐extra‐cost/; No Author ( 2017 ). Food deserts in Flint: What is being done? Retrieved from https://flintphoenix.com/2017/06/12/food‐deserts‐in‐flint‐what‐is‐being‐done/; Trief, P. M., Cibula, D., Delahanty, L. M., & Weinstock, R. S. ( 2016 ). Self‐determination theory and weight loss in a diabetes translation program. Journal of Behavioral Medicine, 40 ( 3 ), 483 – 493.; Villatoro, A. P., Dixon, E., & Mays, V. M. ( 2016 ). Faith‐based organizations and the affordable care act: Reducing Latino mental health care disparities. Psychological Services, 13 ( 1 ), 92 – 104.; Michigan Department of Health and Human Services ([MDHHS] ( 2017 ). Overweight and obesity in Michigan: Surveillance Update 2016. Michigan Department of Health and Human Services ([MDHHS].; Kraus, E., & DuBois, J. M. ( 2017 ). Knowing your limits: A qualitative study of physician and nurse practitioner perspectives on NP independence in primary care. Journal of General Internal Medicine, 32 ( 3 ), 284 – 290. https://doi.org/10.1007/s11606‐016‐3896‐7; Israel, B., Eng, E., Schulz, A., & Parker, E. ( 2012 ). Methods in community‐based participatory research health. San Francisco, CA: Josey Bass.; Hye‐Cheon Kim, K. H., Linna, L., Campbell, M. K., Brooks, C., Koening, H. G., & Weisen, C. ( 2008 ). The WORD (Wholeness, Oneness, Righteousness, Deliverance): A faith based weight‐loss program utilizing a Community‐based Participatory Research Approach. Health Education & Behavior, 35 ( 5 ), 634 – 650.; Houle, J., Lauzier‐Jobin, F., Beaulieu, M. D., Meunier, S., Coulombe, S., Cote, J., Lesperance, F., Chiasson, J. L., Bherer, L., & Lambert, J. ( 2016 ). Socioeconomic status and glycemic control in adult patients with type 2 diabetes: A meditation analysis. BMJ Open Diabetes Research & Care, 4 ( 1 ).; Healthy People ( 2020 ). U.S. Department of Health and Human Services. Healthy people 2020: Nutrition and weight status. U.S. Department of Health and Human Services. https://www.healthypeople.gov/2020/topics‐objectives/topic/nutrition‐andweight‐status Accessed October 21, 2020.; Hanson, C., Staskiewicz, A., Woscyna, G., Lyden, E., Ritsema, T., Norman, J., Scholting, P., & Miller, C. ( 2016 ). Frequency and confidence of healthcare practitioners in encounatering and addressing nutrition‐related issues. Journal of Allied Health, 45 ( 1 ), 54 – 61.; Goodnough, A., & Atkinson, S. ( 2016 ). A potent side effect to the Flint water crisis: Mental health problems. New York Times. https://www.nytimes.com/2016/05/01/us/flint‐michigan‐water‐crisis‐mental‐health.html; Gonzoles‐Zacarias, A. A., Mavarez‐Martinez, A., Arias‐Morales, C. E., Stoceia, N., & Rogers, B. ( 2016 ). Impact of demographic, socioeconomic, and psychological factors on glycemic self‐management in adults with type II diabetes. Frontiers in Public Health, 4 ( 4 ), 195. https://doi.org/10.3389/fpubh.2016.00195; Enriquez, M., Remy, L. M., & O’Connor, J. J. ( 2018 ). CBPR and nursing: Are you ready? Western Journal of Nursing Research, 40 ( 9 ), 1275 – 1277.; Devries, S., Willett, W., & Bonow, R. 0. ( 2019 ). Nutrition education in medical school residency training and practice. JAMA, 321 ( 14 ), 1351 – 1352.; de Souza de Silva, C., Kokkinos, P., Doom, R., Loganathan, D., Fonda, H., Chan, K., Soares de Araujo, C. G., & Myers, J. ( 2019 ). Association between cardiorespiratory fitness, obesity, and health care costs: The Veterans Exercise Testing Study. International Journal of Obesity, 43, 2225 – 2232.; Centers for Disease Control and Prevention ([CDC] ( 2018 ). National center for health statistics (NCHS). National health and nutrition examination survey data. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.; O’Connell, J. M., & Mason, S. M. ( 2019 ). Understanding the economic costs of diabetes and pre‐diabetes and what we may learn about reducing the health and economic burden of these conditions. Diabetes Care 42 ( 9 ), 1609 – 1611.; Bhupathiraju, S. N., & Hu, F. B. ( 2016 ). Epidemiology of obesity and diabetes and their cardiovascular complications. Circulation Research, 118 ( 11 ), 1723 – 1735.

4
Academic Journal

File Description: application/pdf

Relation: Kwak, So‐young; Seo, Il Hyeok; Chung, InHyeok; Kim, Shin Ae; Lee, Jung Ok; Lee, Hye Jeong; Kim, Sung Eun; Han, Jeong Ah; Kang, Min Ju; Kim, Su Jin; Lim, Soo; Kim, Kyoung Min; Chung, Ji Hyung; Lim, Eunice; Hwang, Jong‐ik; Kim, Hyeon Soo; Shin, Min‐jeong (2020). "Effect of chitinase- 3- like protein 1 on glucose metabolism: In vitro skeletal muscle and human genetic association study." The FASEB Journal (10): 13445-13460.; https://hdl.handle.net/2027.42/162777; The FASEB Journal; Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018; 19: 121 - 135.; Kyrgios I, Galli- Tsinopoulou A, Stylianou C, Papakonstantinou E, Arvanitidou M, Haidich AB. Elevated circulating levels of the serum acute- phase protein YKL- 40 (chitinase 3- like protein 1) are a marker of obesity and insulin resistance in prepubertal children. Metabolism. 2012; 61: 562 - 568.; Gorgens SW, Eckardt K, Elsen M, Tennagels N, Eckel J. Chitinase- 3- like protein 1 protects skeletal muscle from TNFalpha- induced inflammation and insulin resistance. Biochem J. 2014; 459: 479 - 488.; Nathan DM, Davidson MB, DeFronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007; 30: 753 - 759.; Kim Y, Han B- G, Ko GESG. Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol. 2017; 46: e20.; Cho YS, Go MJ, Kim YJ, et al. A large- scale genome- wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009; 41: 527 - 534.; Sohn MH, Lee JH, Kim KW, et al. Genetic variation in the promoter region of chitinase 3- like 1 is associated with atopy. Am J Respir Crit Care Med. 2009; 179: 449 - 456.; Nielsen KR, Steffensen R, Boegsted M, et al. Promoter polymorphisms in the chitinase 3- like 1 gene influence the serum concentration of YKL- 40 in Danish patients with rheumatoid arthritis and in healthy subjects. Arthritis Res Ther. 2011; 13: R109.; Leney SE, Tavare JM. The molecular basis of insulin- stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol. 2009; 203: 1 - 18.; Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013; 93: 993 - 1017.; Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin- responsive glucose transporter 4 in adipocytes. Endocr Rev. 2004; 25: 177 - 204.; Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007; 5: 237 - 252.; Jairaman A, Yamashita M, Schleimer RP, Prakriya M. Store- operated Ca2+ release- activated Ca2+ channels regulate PAR2- activated Ca2+ signaling and cytokine production in airway epithelial cells. J Immunol. 2015; 195: 2122 - 2133.; Miinea CP, Sano H, Kane S, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase- activating protein domain. Biochem J. 2005; 391: 87 - 93.; Kramer HF, Witczak CA, Fujii N, et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes. 2006; 55: 2067 - 2076.; Xi X, Han J, Zhang JZ. Stimulation of glucose transport by AMP- activated protein kinase via activation of p38 mitogen- activated protein kinase. J Biol Chem. 2001; 276: 41029 - 41034.; Niu W, Huang C, Nawaz Z, et al. Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem. 2003; 278: 17953 - 17962.; Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009; 418: 261 - 275.; Evers- van Gogh IJ, Alex S, Stienstra R, Brenkman AB, Kersten S, Kalkhoven E. Electric pulse stimulation of myotubes as an in vitro exercise model: cell- mediated and non- cell- mediated effects. Sci Rep. 2015; 5: 10944.; Chupp GL, Lee CG, Jarjour N, et al. A chitinase- like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007; 357: 2016 - 2027.; Johansen JS. Studies on serum YKL- 40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006; 53: 172 - 209.; Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011; 13: 1016 - 1023.; Wang W, Yang X, Lopez de Silanes I, Carling D, Gorospe M. Increased AMP:ATP ratio and AMP- activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem. 2003; 278: 27016 - 27023.; Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin- dependent protein kinase kinase- beta is an alternative upstream kinase for AMP- activated protein kinase. Cell Metab. 2005; 2: 9 - 19.; Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin- dependent protein kinase kinase- beta acts upstream of AMP- activated protein kinase in mammalian cells. Cell Metab. 2005; 2: 21 - 33.; Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. Embo J. 2005; 24: 1810 - 1820.; Koh HJ, Arnolds DE, Fujii N, et al. Skeletal muscle- selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol. 2006; 26: 8217 - 8227.; Musi N, Goodyear LJ. AMP- activated protein kinase and muscle glucose uptake. Acta Physiol Scand. 2003; 178: 337 - 345.; Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5’ AMP- activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998; 47: 1369 - 1373.; Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol. 2012; 13: 383 - 396.; He CH, Lee CG, Dela Cruz CS, et al. Chitinase 3- like 1 regulates cellular and tissue responses via IL- 13 receptor alpha2. Cell Rep. 2013; 4: 830 - 841.; Cicala C. Protease activated receptor 2 and the cardiovascular system. Br J Pharmacol. 2002; 135: 14 - 20.; Thomsen SB, Gjesing AP, Rathcke CN, et al. Associations of the inflammatory marker YKL- 40 with measures of obesity and dyslipidaemia in individuals at high risk of type 2 diabetes. PLoS One. 2015; 10: e0133672.; Toloza FJK, Perez- Matos MC, Ricardo- Silgado ML, et al. Comparison of plasma pigment epithelium- derived factor (PEDF), retinol binding protein 4 (RBP- 4), chitinase- 3- like protein 1 (YKL- 40) and brain- derived neurotrophic factor (BDNF) for the identification of insulin resistance. J Diabetes Complications. 2017; 31: 1423 - 1429.; Park HY, Jun CD, Jeon SJ, et al. Serum YKL- 40 levels correlate with infarct volume, stroke severity, and functional outcome in acute ischemic stroke patients. PLoS One. 2012; 7: e51722.; Schultz NA, Johansen JS. YKL- 40- A protein in the field of translational medicine: a role as a biomarker in cancer patients? Cancers. 2010; 2: 1453 - 1491.; Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007; 103: 1093 - 1098.; Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012; 8: 457 - 465.; Pedersen BK, Steensberg A, Fischer C, et al. Searching for the exercise factor: is IL- 6 a candidate? J Muscle Res Cell Motil. 2003; 24: 113 - 119.; Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle- derived interleukin- 6. Physiol Rev. 2008; 88: 1379 - 1406.; Morrison BW, Leder P. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c- myc and int- 2- initiated tumors. Oncogene. 1994; 9: 3417 - 3426.; Renkema GH, Boot RG, Au FL, et al. Chitotriosidase, a chitinase, and the 39- kDa human cartilage glycoprotein, a chitin- binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem. 1998; 251: 504 - 509.; Shao R, Hamel K, Petersen L, et al. YKL- 40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009; 28: 4456 - 4468.; Gorgens SW, Hjorth M, Eckardt K, et al. The exercise- regulated myokine chitinase- 3- like protein 1 stimulates human myocyte proliferation. Acta Physiol. 2016; 216: 330 - 345.; Di Rosa M, Malaguarnera L. Chitinase 3 like- 1: an emerging molecule involved in diabetes and diabetic complications. Pathobiology. 2016; 83: 228 - 242.; Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase- like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011; 73: 479 - 501.; Rathcke CN, Johansen JS, Vestergaard H. YKL- 40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflamm Res. 2006; 55: 53 - 59.

5
Academic Journal

File Description: application/pdf

Relation: Chung, InHyeok; Kim, Shin Ae; Kim, Seolsong; Lee, Jung Ok; Park, Clara Yongjoo; Lee, Juhee; Kang, Jun; Lee, Jin Young; Seo, Ilhyeok; Lee, Hye Jeong; Han, Jeong Ah; Kang, Min Ju; Lim, Eunice; Kim, Su Jin; Wu, Sang Woo; Oh, Joo Yeon; Chung, Ji Hyung; Kim, Eun‐kyoung; Kim, Hyeon Soo; Shin, Min‐jeong (2021). "Biglycan reduces body weight by regulating food intake in mice and improves glucose metabolism through AMPK/AKT dual pathways in skeletal muscle." The FASEB Journal (8): n/a-n/a.; https://hdl.handle.net/2027.42/168488; The FASEB Journal; Yeo GS, Heisler LK. Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci. 2012; 15: 1343 - 1349.; Kang L, Ayala JE, Lee- Young RS, et al. Diet- induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin α2β1 in mice. Diabetes. 2011; 60: 416 - 426.; Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010; 21: 556 - 563.; Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009; 139: 891 - 906.; Huang G, Greenspan DS. ECM roles in the function of metabolic tissues. Trends Endocrinol Metab. 2012; 23: 16 - 22.; Kang L, Lantier L, Kennedy A, et al. Hyaluronan accumulates with high- fat feeding and contributes to insulin resistance. Diabetes. 2013; 62: 1888 - 1896.; Chanmee T, Ontong P, Izumikawa T, et al. Hyaluronan production regulates metabolic and cancer stem- like properties of breast cancer cells via hexosamine biosynthetic pathway- coupled HIF- 1 signaling. J Biol Chem. 2016; 291: 24105 - 24120.; Ojima K, Oe M, Nakajima I, et al. Proteomic analysis of secreted proteins from skeletal muscle cells during differentiation. EuPA Open Proteom. 2014; 5: 1 - 9.; Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009; 418: 261 - 275.; Carter S, Solomon TP. In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflügers Arch Eur J Phys. 2019; 471: 413 - 429.; Jeon Y, Aja S, Ronnett GV, Kim E- K. D- chiro- inositol glycan reduces food intake by regulating hypothalamic neuropeptide expression via AKT- FoxO1 pathway. Biochem Biophys Res Commun. 2016; 470: 818 - 823.; Ibrahim N, Bosch MA, Smart JL, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express KATP channels. Endocrinology. 2003; 144: 1331 - 1340.; Bowe MA, Mendis DB, Fallon JR. The small leucine- rich repeat proteoglycan biglycan binds to α- dystroglycan and is upregulated in dystrophic muscle. J Cell Biol. 2000; 148: 801 - 810.; Lin S- C, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018; 27: 299 - 313.; Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin- dependent protein kinase kinase- β is an alternative upstream kinase for AMP- activated protein kinase. Cell Metab. 2005; 2: 9 - 19.; Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013; 280: 4294 - 4314.; O’Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J. 2013; 37: 1 - 21.; Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994; 17: 961 - 969.; Shah M, Vella A. What is type 2 diabetes? Medicine. 2014; 42: 687 - 691.; Kwak S- Y, Chung I, Kang J, et al. Sex specific effect of ATPase inhibitory factor 1 on body weight: studies in high fat diet induced obese mice and genetic association studies in humans. Metabolism. 2020; 105: 154171.; Moreth K, Brodbeck R, Babelova A, et al. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J Clin Investig. 2010; 120: 4251 - 4272.; Berendsen AD, Fisher LW, Kilts TM, et al. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci. 2011; 108: 17022 - 17027.; Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007; 129: 251 - 262.; Kim M- S, Pak YK, Jang P- G, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006; 9: 901 - 906.; Ying Z, Byun HR, Meng Q, et al. Biglycan gene connects metabolic dysfunction with brain disorder. Biochim Biophys Acta Mol Basis Dis. 2018; 1864: 3679 - 3687.; Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013; 93 ( 3 ): 993 - 1017.; Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform- specific and exercise intensity- dependent activation of 5- ²- AMP- activated protein kinase in human skeletal muscle. J Physiol. 2000; 528: 221 - 226.; Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5- ² AMP- activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998; 47: 1369 - 1373.; Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018; 14: 1483.; Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase- activating protein abundant in skeletal muscle, is partially relieved by AMP- activated protein kinase activation. J Biol Chem. 2008; 283: 9187 - 9195.; Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011; 96: 2898 - 2903.; Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006; 55: 1813 - 1818.; Kim J, Lee SK, Shin J- M, et al. Enhanced biglycan gene expression in the adipose tissues of obese women and its association with obesity- related genes and metabolic parameters. Sci Rep. 2016; 6: 1 - 11.; Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non- skeletal tissues. J Histochem Cytochem. 1990; 38: 1549 - 1563.; Högemann B, Edel G, Schwarz K, Krech R, Kresse H. Expression of biglycan, decorin and proteoglycan- 100/CSF- 1 in normal and fibrotic human liver. Pathol Res Pract. 1997; 193: 747 - 751.; Matsuura T, Duarte WR, Cheng H, Uzawa K, Yamauchi M. Differential expression of decorin and biglycan genes during mouse tooth development. Matrix Biol. 2001; 20: 367 - 373.; Roughley PJ, Melching LI, Recklies AD. Changes in the expression of decorin and biglycan in human articular cartilage with age and regulation by TGF- β. Matrix Biol. 1994; 14: 51 - 59.; Fisher LW, Termine J, Dejter S, et al. Proteoglycans of developing bone. J Biol Chem. 1983; 258: 6588 - 6594.; Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012; 13: 1079 - 1086.; Kramer HF, Witczak CA, Fujii N, et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes. 2006; 55: 2067 - 2076.; Eriksson H, Welin L, Wilhelmsen L, et al. Metabolic disturbances in hypertension: results from the population study - men born in 1913- . J Intern Med. 1992; 232: 389 - 395.; Schaefer L, Iozzo RV. Biological functions of the small leucine- rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008; 283: 21305 - 21309.; Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF. Abnormal collagen fibrils in tendons of biglycan/fibromodulin- deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 2002; 16: 673 - 680.; Ameye L, Young MF. Mice deficient in small leucine- rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers- Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology. 2002; 12: 107R - 116R.; Schaefer L, Babelova A, Kiss E, et al. The matrix component biglycan is proinflammatory and signals through Toll- like receptors 4 and 2 in macrophages. J Clin Investig. 2005; 115: 2223 - 2233.; Babelova A, Moreth K, Tsalastra- Greul W, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll- like and P2X receptors. J Biol Chem. 2009; 284: 24035 - 24048.; Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M. Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res. 2005; 20: 1878 - 1886.; Amenta AR, Yilmaz A, Bogdanovich S, et al. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci. 2011; 108: 762 - 767.

6
Academic Journal

File Description: application/pdf

Relation: Buchanan, Victoria L; Wang, Yujie; Blanco, Estela; Graff, Mariaelisa; Albala, Cecilia; Burrows, Raquel; Santos, José L; Angel, Bárbara; Lozoff, Betsy; Voruganti, Venkata Saroja; Guo, Xiuqing; Taylor, Kent D; Chen, Yii‐der Ida; Yao, Jie; Tan, Jingyi; Downie, Carolina; Highland, Heather M; Justice, Anne E; Gahagan, Sheila; North, Kari E (2021). "Genome- wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study." Pediatric Obesity 16(7): n/a-n/a.; https://hdl.handle.net/2027.42/168376; Pediatric Obesity; Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009; 41 ( 1 ): 77 - 81. https://doi.org/10.1038/ng.290.; Le Stunff C, Dechartres A, Mariot V, et al. Association analysis indicates that a variant GATA- binding site in the PIK3CB promoter is a cis- acting expression quantitative trait locus for this gene and attenuates insulin resistance in obese children. Diabetes. 2008; 57 ( 2 ): 494 - 502. https://doi.org/10.2337/db07-1273.; SAS Institute Inc, Cary, NC. SAS Version 9.4 for Windows. 2015.; Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome- wide association studies. Nat Genet. 2006; 38 ( 8 ): 904 - 909. https://doi.org/10.1038/ng1847.; SUGEN: Genetic association analysis under complex survey sampling. http://dlin.web.unc.edu/software/SUGEN/; Winkler TW, Kutalik Z, Gorski M, Lottaz C, Kronenberg F, Heid IM. EasyStrata: evaluation and visualization of stratified genome- wide association meta- analysis data. Bioinformatics. 2015; 31 ( 2 ): 259 - 261. https://doi.org/10.1093/bioinformatics/btu621.; Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010; 42 ( 2 ): 105 - 116. https://doi.org/10.1038/ng.520.; Li Y, Abecasis GR. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet. 2006; S79: 2290.; Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome- wide association studies by imputation of genotypes. Nat Genet. 2007; 39: 906 - 913.; Servin B, Stephens M. Imputation- based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 2007; 3: e114.; Rausch JC, Lavine JE, Chalasani N, et al. Genetic variants associated with obesity and insulin resistance in Hispanic boys with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2018; 66 ( 5 ): 789 - 796. https://doi.org/10.1097/MPG.0000000000001926.; Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta- analysis of genomewide association scans. Bioinformatics. 2010; 26 ( 17 ): 2190 - 2191. https://doi.org/10.1093/bioinformatics/btq340.; IGSR: The International Genome Sample Resource: Providing ongoing support for the 1000 Genomes Project Data website. http://www.internationalgenome.org/home. Accessed March 3, 2019.; Nagy R, Boutin TS, Marten J, et al. Exploration of haplotype research consortium imputation for genome- wide association studies in 20,032 generation Scotland participants. Genome Med. 2017; 9 ( 1 ): 23. https://doi.org/10.1186/s13073-017-0414-4.; Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009; 20 ( 4 ): 488 - 495. https://doi.org/10.1097/EDE.0b013e3181a819a1.; Aschard H, Vilhjalmsson BJ, Joshi AD, et al. Adjusting for heritable covariates can bias effect estimates in genome- wide association studies. Am J Hum Genet. 2015; 96 ( 2 ): 329 - 339. https://doi.org/10.1016/j.ajhg.2014.12.021.; Mahajan A, Sim X, Ng HJ, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2- ABCB11 locus. PLoS Genet. 2015; 11 ( 1 ): e1004876. https://doi.org/10.1371/journal.pgen.1004876.; Manning AK, Hivert MF, Scott RA, et al. A genome- wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012; 44 ( 6 ): 659 - 669. https://doi.org/10.1038/ng.2274.; Bouatia- Naji N, Rocheleau G, Van Lommel L, et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science. 2008; 320 ( 5879 ): 1085 - 1088. https://doi.org/10.1126/science.1156849.; Sabatti C, Service SK, Hartikainen AL, et al. Genome- wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009; 41 ( 1 ): 35 - 46. https://doi.org/10.1038/ng.271.; Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016; 538 ( 7624 ): 161 - 164. https://doi.org/10.1038/538161a.; Helgeland O, Vaudel M, Juliusson PB, et al. Genome- wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat Commun. 2019; 10 ( 1 ): 4448. https://doi.org/10.1038/s41467-019-12308-0.; Justice AE, Chittoor G, Blanco E, et al. Genetic determinants of BMI from early childhood to adolescence: the Santiago longitudinal study. Pediatr Obes. 2019; 14 ( 3 ): e12479. https://doi.org/10.1111/ijpo.12479.; Couto Alves A, De Silva NMG, Karhunen V, et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv. 2019; 5 ( 9 ): eaaw3095. https://doi.org/10.1126/sciadv.aaw3095.; Arya R, Farook VS, Fowler SP, et al. Genetic and environmental (physical fitness and sedentary activity) interaction effects on cardiometabolic risk factors in Mexican American children and adolescents. Genet Epidemiol. 2018; 42 ( 4 ): 378 - 393. https://doi.org/10.1002/gepi.22114.; LDlink Version 3.4.0. National Institutes of Health: National Cancer Institute Division of Cancer Epidemiology and Genetics website. https://ldlink.nci.nih.gov/?tab=home. Accessed March 4, 2019.; GeneCards Human Gene Database (v4.9.0 Build 6). Weizmann Insitute of Science website. https://www.genecards.org/. Accessed March 4, 2019.; UniProtKB: Q96PZ7: CSMD1_HUMAN. The UniProt Consortium website. https://www.uniprot.org/uniprot/Q96PZ7. Accessed March 4, 2019.; Toomes C, Jackson A, Maguire K, et al. The presence of multiple regions of homozygous deletion at the CSMD1 locus in oral squamous cell carcinoma question the role of CSMD1 in head and neck carcinogenesis. Genes Chromosomes Cancer. 2003; 37 ( 2 ): 132 - 140. https://doi.org/10.1002/gcc.10191.; Scholnick SB, Richter TM. The role of CSMD1 in head and neck carcinogenesis. Genes Chromosomes Cancer. 2003; 38 ( 3 ): 281 - 283. https://doi.org/10.1002/gcc.10279.; QuickGO: GO annotations: CSMD1. European Molecular Biology Laboratory: European Bioinformatics Institute website. https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q96PZ7. Accessed March 4, 2019.; Steen VM, Nepal C, Ersland KM, et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One. 2013; 8 ( 11 ): e79501. https://doi.org/10.1371/journal.pone.0079501.; Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012; 40: D930 - D934. https://doi.org/10.1093/nar/gkr917.; GTEx Portal. Broad Institute website. https://gtexportal.org/home/. Accessed April 7, 2019.; Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National Library of Medicine. (dbSNP Build ID:153). Available from: http://www-ncbi-nlm-nih-gov.libproxy.lib.unc.edu/SNP/; Reaven GM. What do we learn from measurements of HOMA- IR? Diabetologia. 2013; 56 ( 8 ): 1867 - 1868. https://doi.org/10.1007/s00125-013-2948-3.; Muniyappa R, Madan R. Assessing insulin sensitivity and resistance in humans. In: Feingold KR, Anawalt B, Boyce A, et al., eds. Endotext. South Dartmouth, MA: MDText.com, Inc; 2000. PMID: 25905189.; Mi D, Fang H, Zhao Y, Zhong L. Birth weight and type 2 diabetes: a meta- analysis. Exp Ther Med. 2017; 14 ( 6 ): 5313 - 5320. https://doi.org/10.3892/etm.2017.5234.; Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3 ( 11 ): e442. https://doi.org/10.1371/journal.pmed.0030442.; Diabetes: World Health Organization website. https://www.who.int/en/news-room/fact-sheets/detail/diabetes. Updated October 30, 2018. Accessed March 1, 2019.; Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40 - 50. https://doi.org/10.1016/j.diabres.2017.03.024.; Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018; 6 ( 1 ): 69 - 80. https://doi.org/10.1016/S2213-8587(17)30186-9.; Encuesta Nactional de Salud 2016- 2017: Primeros resultados. In: Department of Epidemiology Division of Health Planning, Santiago, Chile: Ministry of Health, Government of Chile. 2017.; Insulin Resistance & Prediabetes. National Institutes of Health: National Institute of Diabetes and Digestive and Kidney Diseases website. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance. Updated May 2018. Accessed March 13, 2019.; Tabak AG, Herder C, Rathmann W, et al. Prediabetes: a high- risk state for diabetes development. Lancet. 2012; 379 ( 9833 ): 2279 - 2290. https://doi.org/10.1016/S0140-6736(12)60283-9.; Genetics Home Reference. Type 2 diabetes. National Institutes of Health: US National Library of Medicine website. https://ghr.nlm.nih.gov/condition/type-2-diabetes#sourcesforpage Updated November 2017. Accessed March 13, 2019.; Mohlke KL, Boehnke M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum Mol Genet. 2015; 24 ( R1 ): R85 - R92. https://doi.org/10.1093/hmg/ddv264.; Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta- analysis of over 6,000 children. Diabetes. 2011; 60 ( 6 ): 1805 - 1812. https://doi.org/10.2337/db10-1575.; Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus- from genes to prevention. Nat Rev Endocrinol. 2014; 10 ( 4 ): 198 - 205. https://doi.org/10.1038/nrendo.2014.11.; Vassy JL, Durant NH, Kabagambe EK, et al. A genotype risk score predicts type 2 diabetes from young adulthood: the CARDIA study. Diabetologia. 2012; 55 ( 10 ): 2604 - 2612. https://doi.org/10.1007/s00125-012-2637-7.; Vassy JL, Dasmahapatra P, Meigs JB, et al. Genotype prediction of adult type 2 diabetes from adolescence in a multiracial population. Pediatrics. 2012; 130 ( 5 ): e1235- 42. https://doi.org/10.1542/peds.2012-1132.; Lozoff B, De Andraca I, Castillo M, et al. Behavioral and developmental effects of preventing iron- deficiency anemia in healthy full- term infants. Pediatrics. 2003; 112 ( 4 ): 846 - 854.; Rose O, Blanco E, Martinez SM, et al. Developmental scores at 1 year with increasing gestational age, 37- 41- weeks. Pediatrics. 2013; 131 ( 5 ): e1475- 81. https://doi.org/10.1542/peds.2012-3215.; Pacheco LS, Blanco E, Burrows R, Reyes M, Lozoff B, Gahagan S. Early onset obesity and risk of metabolic syndrome among Chilean adolescents. Prev Chronic Dis. 2017; 14: E93. https://doi.org/10.5888/pcd14.170132.; East P, Lozoff B, Blanco E, et al. Infant iron deficiency, child affect, and maternal unresponsiveness: testing the long- term effects of functional isolation. Dev Psychol. 2017; 53 ( 12 ): 2233 - 2244. https://doi.org/10.1037/dev0000385.; Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004; 27 ( 6 ): 1487 - 1495. https://doi.org/10.2337/diacare.27.6.1487.; Fryar CD, Gu Q, Ogden CL. Anthropometric reference data for children and adults: United States, 2007- 2010. Vital Health Stat. 2012; 11 ( 252 ): 1 - 48.; The NHGRI- EBI GWAS Catalog of Published Genome- Wide Association Studies website. https://www.ebi.ac.uk/gwas/docs/about. Accessed June 19, 2018.; Bien SA, Pankow JS, Haessler J, et al. Transethnic insight into the genetics of glycemic traits: fine- mapping results from the population architecture using genomics and epidemiology (PAGE) consortium. Diabetologia. 2017; 60 ( 12 ): 2384 - 2398. https://doi.org/10.1007/s00125-017-4405-1.; Scott RA, Lagou V, Welch RP, et al. Large- scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012; 44 ( 9 ): 991 - 1005. https://doi.org/10.1038/ng.2385.; Horikoshi M, Mgi R, van de Bunt M, et al. Discovery and fine- mapping of glycemic and obesity- related trait loci using high- density imputation. PLoS Genet. 2015; 11 ( 7 ): e1005230. https://doi.org/10.1371/journal.pgen.1005230.

7
Academic Journal

File Description: application/pdf

Relation: Zhang, Qi; Meyerhoff, Mark E. (2021). "Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors." Electroanalysis 33(9): 1997-2015.; https://hdl.handle.net/2027.42/170306; Electroanalysis; B. K. Oh, M. E. Meyerhoff, J. Am. Chem. Soc. 2003, 125, 9552 – 9553.; E. Kulcu, J. A. Tamada, G. Reach, R. O. Potts, M. J. Lesho, Diabetes Care 2003, 26, 2405 – 2409.; E. M. Hetrick, H. L. Prichard, B. Klitzman, M. H. Schoenfisch, Biomaterials 2007, 28, 4571 – 4580.; H. Lee, Y. J. Hong, S. Baik, T. Hyeon, D.-H. Kim, Adv. Healthcare Mater. 2018, 7, 1701150.; Y. Wang, S. Vaddiraju, B. Gu, F. Papadimitrakopoulos, D. J. Burgess, J. Diabetes Sci. Technol. 2015, 9, 966 – 977.; J. M. Anderson, Cardiovasc. Pathol. 1993, 2, 33 – 41.; M. Gerritsen, J. A. Jansen, J. A. Lutterman, Neth. J. Med. 1999, 54, 167 – 179.; W. K. Ward, J. Diabetes Sci. Technol. 2008, 2, 768 – 777.; U. Klueh, D. I. Dorsky, D. L. Kreautzer, Biomaterials 2005, 26, 1155 – 1163.; J. I. Joseph, G. Eisler, D. Diaz, A. Khalf, C. Loeum, M. C. Torjman, Diabetes Technol. Ther. 2018, 20, 321 – 324.; G. Acciaroli, M. Vettoretti, A. Facchinetti, G. Sparacino, Biosensors 2018, 8, 24.; N. Wisniewski, M. Reichert, Colloids Surf. B Biointerf. 2000, 18, 197.; Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D. J. Burgess, J. Diabetes Sci. Technol. 2008, 2, 1003 – 1015.; S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin, M. H. Schoenfisch, Chem. Rev. 2013, 113 2528 – 2549.; P. H. Kvist, H. E. Jensen, J. Diabetes Sci. Technol. 2007, 1, 746 – 752.; P. Lin, C. Lin, R. Mansour, F. Gu, Biosens. Bioelectron. 2013, 47, 451 – 460.; A. J. T. Teo, A. Mishra, I. Park, Y. Kim, W. Park, Y. Yoon, ACS Biomater. Sci. Eng. 2016, 2, 454 – 472.; X. H. Wang, in Advances in Biomaterials Science and Applications in Biomedicine (Ed: R.Lazinica ), InTech, Rijeka, Croatia, 2013, 111 – 155.; C. Espadas-Torre, M. Meyerhoff, Anal. Chem. 1995, 67, 3108 – 3114.; C. Quinn, R. Connor, A. Heller, Biomaterials 1997, 18, 1665 – 1670.; D. Grainger, Nat. Biotechnol. 2013, 31, 507 – 509.; S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Biomaterials 2005, 26, 4767 – 4778.; S. Zhang, Y. Benmakroha, P. Rolfe, S. Tanaka, K. Ishihara, Biosens. Bioelectron. 1996, 11, 1019 – 1029.; B. Towe, V. Pizziconi, Biosens. Bioelectron. 1997, 12, 893 – 899.; G. P. Rigby, P. W. Crump, P. Vadgama, Analyst 1996, 121, 871 – 875.; G. P. Rigby, S. Ahmed, G. Horseman, P. Vadgama, Anal. Chim. Acta 1999, 385, 23 – 32.; D. J. Harrison, R. F. Turner, H. P. Baltes, Anal. Chem. 1988, 60, 2002 – 2007.; F Moussy, D. J. Harrison, R. V. Rajotte, Int. J. Artif. Organs. 1994, 17, 88 – 94.; M. Kyrolainen, H. Hakanson, B. Mattiasson, P. Vadgama, Biosens. Bioelectron. 1997, 12, 1073 – 1081.; S. M. Reddy, P. M. Vadgama, Anal. Chim. Acta 1997, 350, 77 – 89.; S. P. J. Higson, P. M. Vadgama, Anal. Chim. Acta 1993, 271, 125 – 133.; S. P. J. Higson, P. M. Vadgama, Anal. Chim. Acta 1995, 300, 77 – 83.; B. Yu, N. Long, Y. Moussy, F. Moussy, Biosens. Bioelectron. 2006, 21, 2275 – 2282.; D. J. Martin, L. A. P. Warren, P. A. Gunatillake, S. J. McCarthy, G. F. Meijs, K. Schindhelm, Biomaterials 2000, 21, 1021 – 1029.; H. P. Ammon, W. Ege, M. Oppermann, W. Gopel, S. Eisele, Anal. Chem. 1995, 67, 466 – 471.; S. Pradhan, A. K. Brooks, V. K. Yadavalli, Materials Today Bio 2020, 7, 100065.; M. Aramesh, O. Shimoni, K. Fox, T. J. Karle, A. Lohrmann, K. Ostrikov, S. Prawer, J. Cervenkaaf, Nanoscale 2015, 7, 5998 – 6006.; Y. M. Ju, B. Yu, T. J. Koob, Y. Moussy, F. Moussy, J. Biomed. Mater. Res. Part A 2008, 87, 136 – 146.; J. Wang, L. Chen, S. B. Hocevar, B. Ogorev, Analyst 2000, 125, 1431 – 1434.; S. S. Praveen, R. Hanumantha, J. M. Belovich, B. L. Davis, Diabetes Technol. Ther. 2003, 5, 393 – 399.; S. G. Vallejo-Heligon, B. Klitzman, W. M. Reichert, Acta Biomater. 2014, 10, 4629 – 4638.; U. Klueh, D. I. Dorsky, D. L. Kreutzer, J. Biomed. Mater. Res. 2003, 67A, 1072 – 86.; L. W. Norton, H. E. Koschwanez, N. A. Wisniewski, B. Klitzman, W. M. Reichert, J. Biomed. Mater. Res. Part A 2007 81, 858 – 69.; C. Espadas-Torre, V. Oklejas, K. Mowery, M. E. Meyerhoff, J. Am. Chem. Soc. 1997, 119, 2321 – 2322.; G.-R. Wang, Y. Zhu, P. V. Halushka, T. M. Lincoln, M. E. Mendelsohn, Proc. Natl. Acad. Sci. USA 1998, 95, 4888 – 4893.; J. W. Coleman, Int. Immunopharmacol. 2001, 1, 1397 – 1406.; R. Korhonen, A. Lahti, H. Kankaanranta, E. Moilanen, Curr. Drug Targets: Inflammation Allergy 2005, 4, 471 – 479.; J. MacMicking, Q. W. Xie, C. Nathan, Annu. Rev. Immunol. 1997, 15, 323 – 50.; E. Änggård, Lancet 1994, 343, 1199 – 1206.; K. H. Cha, X. Wang, M. E. Meyerhoff, Appl. Mater. Res. 2017, 9, 589 – 597.; C. Nathan, Q. W. Xie, Cell 1994, 78, 915 – 918.; A. R. Butler, D. L. H. Williams, Chem. Soc. Rev. 1993, 22, 233 – 241.; R. Bruckdorfer, Mol. Aspects Med. 2005, 26, 3 – 31.; A. Gries, C. Bode, K. Peter, A. Herr, H. Bohrer, J. Motsch, E. Martin, Circulation 1998, 97, 1481 – 1487.; J. E. Freedman, J. Loscalzo, M. R. Barnard, C. Alpert, J. F. Keaney, A. D. Michelson, J. Clin. Invest. 1997, 100, 350 – 356.; G. Walford, J. Loscalzo, J. Thromb. Haemostasis 2003, 1, 2112 – 2118.; T. J. Guzik, R. Korbut, T. Adamek-Guzik, J. Physiol. Pharmacol. 2003, 54, 469.; E. M. Hetrick, M. H. Schoenfisch, Annu. Rev. Anal. Chem. 2009, 2, 409 – 433.; M. B. Grisham, D. Jourd′Heuil, D. A. Wink, Am. J. Physiol. 1999, 276, G315 – 321.; H. Ren, J. Wu, C. Xi, N. Lehnert, T. C. Major, R. H. Bartlett, M. E. Meyerhoff, ACS Appl. Mater. Interfaces 2014, 6, 3779 – 3793.; L. Höfler, D. Koley, J. Wu, C. Xi, M. E. Meyerhoff, RSC Adv. 2012, 2, 6765 – 6767.; V. Wonoputri, C. Gunawan, S. Liu, N. Barraud, L. H. Yee, M. Lim, R. Amal, ACS Appl. Mater. Interfaces 2015, 7, 22148 – 22156.; A. P. Hunt, A. E. Batka, M. Hosseinzadeh, J. D. Gregory, H. K. Haque, H. Ren, M. E. Meyerhoff, N. Lehnert, ACS Catal. 2019, 9, 7746 – 7758.; K. K. Konopińska, N. J. Schmidt, A. P. Hunt, N. Lehnert, J. Wu, C. Xi, M. E. Meyerhoff, ACS Appl. Mater. Interfaces 2018, 10, 25047 – 25055.; K. A. Mowery, M. H. Schoenfisch, N. Baliga, J. A. Wahr, M. E. Meyerhoff, Electroanalysis 1999, 11, 681 – 686.; M. H. Schoenfisch, K. A. Mowery, M. V. Rader, N. Baliga, J. A. Wahr, M. E. Meyerhoff, Anal. Chem. 2000, 72, 1119 – 1126.; M. C. Frost, S. M. Rudich, H. P. Zhang, M. A. Maraschio, M. E. Meyerhoff, Anal. Chem. 2002, 74, 5942 – 5947.; S. M. Marxer, M. E. Robbins, M. H. Schoenfisch, Analyst 2004, 130, 206 – 212.; Y. Wu, A. P. Rojas, G. W. Griffith, A. M. Skrzypchak, N. Lafayette, R. H. Bartlett, M. E. Meyerhoff, Sens. Actuators B 2007, 121, 36.; M. M. McCabe, P. Hala, A. Rojas-Pena, O. Lautner-Csorba, T. C. Major, H. Ren, R. H. Bartlett, E. J. Brisbois, M. E. Meyerhoff, Talanta. 2019, 205, 120077.; H. Ren, M. A. Coughlin, T. C. Major, S. Aiello, A. R. Pena, R. H. Bartlett, M. E. Meyerhoff, Anal. Chem. 2015, 87, 8067 – 8072.; M. Telting-Diaz, M. E. Collison, M. E. Meyerhoff, Anal. Chem. 1994, 66, 576 – 583.; R. K. Meruva, M. E. Meyerhoff, Biosens. Bioelectron. 1998, 13, 201 – 212.; Q. Liu, P. Singha, H. Handa, J. Locklin, Langmuir 2017, 33, 13105 – 13113.; K. H. Cha, M. E. Meyerhoff, ACS Sens. 2017, 2, 1262 – 1266.; T. J. Ohara, R. Rajagopalan, A. Heller, Anal. Chem. 1993, 65, 3512 – 3517.; A. Heller, B. Feldman, Chem. Rev. 2008, 108, 2482 – 2505.; J. Bakker, M. W. N. Nijsten, T. C. Jansen, Ann. Intensive Care. 2013, 3, 12.; K. Rathee, V. Dhull, R. Dhull, S. Singh, Biochem. Biophys. Rep. 2016, 5, 35 – 54.; A. Wolf, K. Renehan, K. K. Y. Ho, B. D. Carr, C. V. Chen, M. S. Cornell, M. Ye, A. Rojas-Peña, H. Chen, Biosensors 2018, 8, 122.; M. H. Schoenfisch, H. Zhang, M. C. Frost, M. E. Meyerhoff, Anal. Chem. 2002, 74, 5937 – 5941.; K. P. Dobmeier, G. W. Charville, M. H. Schoenfisch, Anal. Chem. 2006, 78, 7461 – 7466.; J. L. Smith, M. J. Rice, J. Diabetes Sci. Technol. 2015, 9, 782 – 791.; B. J. van Enter, E. von Hauff, Chem. Commun. 2018, 54, 5032 – 5045.; S. G. Vallejo-Heligon, N. L. Brown, W. M. Reichert, B. Klitzman, Acta Biomater. 2016, 30. 106 – 115.; E. J. Brisbois, H. Handa, T. C. Major, R. H. Bartlett, M. E. Meyerhoff, Biomaterials 2013, 34, 6957 – 6966.; S. P. Hopkins, J. Pant, M. J. Goudie, C. Schmiedt, H. Handa, ACS Appl. Mater. Interfaces 2018, 10, 27316 – 27325.; D. A. Riccio, M. H. Schoenfisch, Chem. Soc. Rev. 2012, 41, 3731 – 3741.; T. Yang, A. N. Zelikin, R. Chandrawati, Adv. Sci. 2018, 5, 1701043.; H. Liang, P. Nacharaju, A. Friedman, J. M. Friedman, Future Sci. OA 2015, 1, FSO54.; Y. Zhou, Q. Zhang, J. Wu, C. Xi, M. E. Meyerhoff, J. Mater. Chem. B 2018, 6, 6142 – 6152.; Y. Zhou, J. Tan, Y. Dai, Y. Yu, Q. Zhang, M. E. Meyerhoff, Chem. Commun. 2019, 55, 401 – 404.; R. Devine, M. J. Goudie, P. Singha, C. Schmiedt, M. Douglass, E. J. Brisbois, H. Handa, ACS Appl. Mater. Interfaces 2020, 12, 20158 – 20171.; Z. R. Zhou, M. E. Meyerhoff, Biomaterials 2005, 26, 6506 – 6517.; B. Wu, B. Gerlitz, B. W. Grinnell, M. E. Meyerhoff, Biomaterials 2007, 28, 4047 – 4055.; T. C. Major, E. J. Brisbois, A. M. Jones, M. E. Zanetti, G. M. Annich, R. H. Bartlett, H. Handa, Biomaterials 2014, 35, 7271 – 7285.; W. L. Storm, J. A. Johnson, B. V. Worley, D. L. Slomberg, M. H. Schoenfisch, J. Biomed. Mater. Res. Part A 2014, 103, 1974 – 1984.; A. W. Carpenter, B. V. Worley, D. L. Slomberg, M. H. Schoenfisch, Biomacromolecules 2012, 13, 3334 – 3342.; L. J. Taite, P. Yang, H.-W. Jun, J. L. West, J. Biomed. Mater. Res. Part B 2007, 84, 108 – 116.; T.-K. Nguyen, R. Selvanayagam, K. K. K. Ho, R. Chen, S. K. Kutty, S. A. Rice, N. Kumar, N. Barraud, H. T. T. Duong, C. Boyer, Chem. Sci. 2016, 7, 1016 – 1027.; P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, A. J. Janczuk, Chem. Rev. 2002, 102, 1091 – 1134.; D. DeSalvo, B. Buckingham, Curr. Diabetes Rep. 2013, 13, 657 – 662.; G. S. Wilson, Y. Hu, Chem. Rev. 2000, 100, 2693 – 2704.; G. S. Wilson, R. Gifford, Biosens. Bioelectron. 2005, 20, 2399 – 2403.; M. Frost, M. M. E. Meyerhoff, Curr. Opin. Chem. Biol. 2002, 6, 633 – 641.; E. Fogt, Clin. Chem. 1990, 36, 1573 – 1580.; M. E. Meyerhoff, TrAC Trends Anal. Chem. 1993, 12, 257 – 266.; J. W. Severinghaus, P. Astrup, J. F. Murray, Am. J. Respir. Crit. Care Med. 1998, 157, S114 – S122.; W. V. Tamborlane et al., N. Engl. J. Med. 2008. 359, 1464 – 76.; D. Rodbard, Diabetes Technol. Ther. 2016, 18, S2 – S13.; B. D. Ratner, Biomaterials 2007, 28, 5144 – 5147.; J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86 – 100.; N. Wisniewski, F. Moussy, W. M. Reichert, Fresenius J. Anal. Chem. 2000, 366, 611 – 621.; M. Frost, M. E. Meyerhoff, Anal. Chem. 2006, 78, 7370 – 7377.; Y. Wu, M. E. Meyerhoff, Talanta 2008, 75, 642 – 650.; B. D. Ratner, J. Biomed. Mater. Res. 1993, 27, 283 – 287.; M. C. Frost, M. E. Meyerhoff, Annu. Rev. Anal. Chem. 2015, 8, 171 – 192.; R. J. Soto, J. R. Hall, M. D. Brown, J. B. Taylor, M. H. Schoenfisch, Anal. Chem. 2017, 89, 276 – 299.; M. Ganter, A. Zollinger, Br. J. Anaesth. 2003, 91, 397 – 407.; C. K. Mahute, Clin. Biochem. 1998, 31, 119 – 130.; J. M. Anderson, R. E. Marchant, in Infections Associated with Indwelling Medical Devices (Ed: F. A. Waldvogel, A. L. Bisno ), ASM Press, Washington, DC, 2000, 89 – 109.; H. Teymourian, A. Barfidokht, J. Wang, Chem. Soc. Rev. 2020, 49, 7671 – 7709.; R. J. Galindo, G. Aleppo, Diabetes Res. Clin. Pract. 2020, 170, 108502.; X. Wang, A. Jolliffe, B. Carr, Q. Zhang, M. Bilger, Y. Cui, J. Wu, X. Wang, M. Mahoney, A. Rojas-Pena, M. J. Hoenerhoff, J. Douglas, R. H. Bartlett, C. Xi, J. L. Bull, M. E. Meyerhoff, Biomater. Sci. 2018, 6, 3189 – 3201.; S. P. Nichols, A. Koh, N. L. Brown, M. B. Rose, B. Sun, D. L. Slomberg, D. A. Riccio, B. Klitzman, M. H. Schoenfisch, Biomaterials 2012, 33, 6305 – 6312.; Y. Wang, S. Chen, Y. Pan, J. Gao, D. Tang, D. Kong, S. Wang, J. Mater. Chem. B 2015, 3, 9212 – 9222.; L. J. Taite, P. Yang, H. W. Jun, J. L. West, J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 108 – 116.; J. Dulak, A. Jozkowicz, A. Dembinska-Kiec, I. Guevara, A. Zdzienicka, D. Zmudzinska-Grochot, I. Florek, A. Wojtowicz, A. Szuba, J. P. Cooke, Arterioscler. Thromb. Vasc. Biol. 2000, 20, 659 – 666.; A. W. Carpenter, M. H. Schoenfisch, Chem. Soc. Rev. 2012, 41, 3742 – 3752.; M. A. De Groote, F. C. Fang, Clin. Infect. Dis. 1995, 2, S162 – 165.; Y. Wo, E. J. Brisbois, R. H. Bartlett, M. E. Meyerhoff, Biomater. Sci. 2016, 4, 1161 – 1183.; M. C. Frost, M. M. Batchelor, Y. M. Lee, H. P. Zhang, Y. J. Kang, B. K. Oh, G. S. Wilson, R. Gifford, S. M. Rudich, M. E. Meyerhoff, Microchem. J. 2003, 74, 277 – 288.; D. D. Thomas, X. Liu, S. P. Kantrow, J. R. Lancaster, Proc. Natl. Acad. Sci. USA 2001. 98, 355 – 360.; M. Vaughn, L. Kuo, J. Liao, J. Cell. Physiol. 1998, 274, H2163 – H2176.; M. W. Vaughn, L. Kuo, J. C. Liao, Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H1705 – H1714.; A. J. Gow, B. P. Luchsinger, J. R. Pawloski, D. J. Singel, J. S. Stamler, Proc. Natl. Acad. Sci. USA 1999, 96, 9027 – 9032.; R. S. Drago, B. R. Karstetter, J. Am. Chem. Soc. 1961, 83, 1819 – 1822.; L. K. Keefer, ACS Chem. Biol. 2011, 6, 1147 – 1155.; K. M. Davies, D. A. Wink, J. E. Saavedra, L. K. Keefer, J. Am. Chem. Soc. 2001, 123, 5473 – 5481.; K. A. Mowery, M. H. Schoenfisch, J. E. Saavedra, L. K. Keefer, M. E. Meyerhoff, Biomaterials 2000, 21, 9 – 21.; D. L. H. Williams, Acc. Chem. Res. 1999, 32, 869 – 876.; K. Szacilowski, Z. Stasicka, Prog. React. Kinet. 2001, 26, 1 – 58.; S. P. Singh, J. S. Wishnok, M. Keshive, W. M. Deen, S. R. Tannenbaum, Proc. Natl. Acad. Sci. USA 1996, 93, 14428 – 14433.; R. A. P. Kark, D. C. Poskanzer, J. D. Bullock, G. Boylen, N. Engl. J. Med. 1971, 285, 10 – 16.; R. J. Singh, N. Hogg, J. Joseph, B. Kalyanaraman, J. Biol. Chem. 1996, 271, 18596 – 18603.; C. W. McCarthy, R. J. Guillory, II, J. Goldman, M. C. Frost, ACS Appl. Mater. Interfaces 2016, 8, 10128 – 10135.; A. J. Holmes, D. L. H. Williams, J. Chem. Soc. Perkin Trans. 2 2000, 1639 – 1644.; D. A. Riccio, K. P. Dobmeier, E. M. Hetrick, B. J. Privett, H. S. Paul, M. H. Schoenfisch, Biomaterials 2009, 30, 4494 – 4502.; M. J. Malone-Povolny, M. H. Schoenfisch, ACS Appl. Mater. Interfaces 2019, 11, 12216 – 12223.; Y. Wo, Z. Li, E. J. Brisbois, A. Colletta, J. Wu, T. C. Major, C. Xi, R. H. Bartlett, A. J. Matzger, M. E. Meyerhoff, ACS Appl. Mater. Interfaces 2015, 7, 22218 – 22227.; J. C. Doverspike, S. J. Mack, A. Luo, B. Stringer, S. Reno, M. S. Cornell, A. Rojas-Pena, J. Wu, C. Xi, A. Yevzlin, M. E. Meyerhoff, ACS Appl. Mater. Interfaces 2020, 12, 44475 – 44484.; Q. Zhang, S. J. Stachelek, V. V. Inamdar, I. Alferiev, C. Nagaswami, J. W. Weisel, J. H. Hwang, M. E. Meyerhoff, Colloids Surf. B 2020, 192, 111060.; E. Cengiz, W. V. Tamborlane, Diabetes Technol. Ther. 2009, 11, S11 – S16.; S. Hwang, W. Cha, M. E. Meyerhoff, Angew. Chem. Int. Ed. 2006, 45, 2745 – 2748; Angew. Chem. 2006, 118, 2811 – 2814.; W. Cha, M. E. Meyerhoff, Biomaterials 2007, 28, 19 – 27.; S. Hwang, M. E. Meyerhoff, J. Mater. Chem. 2007, 17, 1462 – 1465.; M. J. Neufeld, A. Lutzke, W. M. Jones, M. M. Reynolds, ACS Appl. Mater. Interfaces 2017, 9, 35628 – 35641.; J. Pant, M. J. Goudie, S. P. Hopkins, E. J. Brisbois, H. Handa, ACS Appl. Mater. Interfaces 2017, 9, 15254 – 15264.; Q. Zhang, G. P. Murray, J. E. Hill, S. L. Harvey, A. Rojas-Pena, J. Choi, Y. Zhou, R. H. Bartlett, M. E. Meyerhoff, Anal. Chem. 2020, 92, 13641 – 13646.; G. Guilbault, G. Lubrano, Anal. Chim. Acta 1973, 64, 439.; J. Wang, Electroanalysis 2001, 13, 983 – 988.; Y. Zhang, Y. Hu, G. S. Wilson, D. Moatti-Sirat, V. Poitout, G. Reach, Anal. Chem. 1994, 66, 1183 – 1188.; R. Gifford, M. M. Batchelor, Y. Lee, G. Gokulrangan, M. E. Meyerhoff, G. S. Wilson, J. Biomed. Mater. Res. Part A 2005, 75, 755 – 766.; J. H. Shin, S. M. Marxer, M. H. Schoenfisch, Anal. Chem. 2004, 76, 4543 – 4549.; B. K. Oh, M. E. Robbins, B. J. Nablo, M. H. Schoenfisch, Biosens. Bioelectron. 2005, 21, 749 – 757.; M. H. Schoenfisch, A. R. Rothrock, J. H. Shin, M. A. Polizzi, M. F. Brinkley, K. P. Dobmeier, Biosens. Bioelectron. 2006, 22, 306 – 312.; A. Koh, Y. Lu, M. H. Schoenfisch, Anal. Chem. 2013, 85, 10488 – 10494.; A. Koh, D. A. Riccio, B. Sun, A. W. Carpenter, S. P. Nichols, M. H. Schoenfisch, Biosens. Bioelectron. 2011, 28, 17 – 24.; R. J. Soto, B. J. Privett, M. H. Schoenfisch, Anal. Chem. 2014, 86, 7141 – 7149.; R. J. Soto, J. B. Schofield, S. E. Walter, M. J. Malone-Povolny, M. H. Schoenfisch, ACS Sens. 2017, 2, 140 – 150.; M. J. Malone-Povolny, E. P. Merricks, L. E. Wimsey, T. C. Nichols, M. H. Schoenfisch, ACS Sens. 2019, 4, 3257 – 3264.; Q. Yan, T. C. Major, R. H. Bartlett, M. E. Meyerhoff, Biosens. Bioelectron. 2011, 26, 4276 – 4282.; A. K. Wolf, Y. Qin, T. C. Major, M. E. Meyerhoff, Chin. Chem. Lett. 2015, 26, 464 – 468.

8
Academic Journal

File Description: application/pdf

Relation: Runge, Carly R.; Ng, Michelle; Herman, William H.; Gebremariam, Acham; Hirschfeld, Emily; Lee, Joyce M. (2020). "Racial differences in prediabetes prevalence by test type for the US pediatric and adult population: NHANES 1999‐2016." Pediatric Diabetes 21(7): 1110-1115.; https://hdl.handle.net/2027.42/163459; Pediatric Diabetes; American Diabetes Association. Children and adolescents: standards of medical care in diabetes‐2018. Diabetes Care. 2018; 41: 126 ‐ 136.; Pani LN, Korenda L, Meigs JB, et al. Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001‐2004. Diabetes Care. 2008; 31 ( 10 ): 1991 ‐ 1996.; Herman WH, Dungan KM, Wolffenbuttel BH, et al. Racial and ethnic differences in mean plasma glucose, hemoglobin A1c, and 1,5‐anhydroglucitol in over 2000 patients with type 2 diabetes. J Clin Endocrinol Metab. 2009; 94: 1689 ‐ 1694.; Herman WH, Ma Y, Uwaifo G, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the diabetes prevention program. Diabetes Care. 2007; 30 ( 10 ): 2453 ‐ 2457.; Ehehalt S, Wiegand S, Korner A, et al. Diabetes screening in overweight and obese children and adolescents: choosing the right test. Eur J Pediatr. 2017; 176 ( 1 ): 89 ‐ 97.; Nowicka P, Santoro N, Liu H, et al. Utility of hemoglobin a(1c) for diagnosing prediabetes and diabetes in obese children and adolescents. Diabetes Care. 2011; 34 ( 6 ): 1306 ‐ 1311.; Vijayakumar P, Nelson RG, Hanson RL, Knowler WV, Sinha M. HbA1c and the prediction of type 2 diabetes in children and adults. Diabetes Care. 2017; 40 ( 1 ): 16 ‐ 21.; Vajravelu ME, Lee JM. Identifying prediabetes and type 2 diabetes in asymptomatic youth: should HbA1c be used as a diagnostic approach? Curr Diab Rep. 2018; 18: 43.; Dabelea D, Mayer‐Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014; 311 ( 17 ): 1778 ‐ 1786.; Libman IM, Barinas‐Mitchell E, Bartucci A, Robertson R, Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008; 93 ( 11 ): 4231 ‐ 4237.; Kelsey MM, Zeitler PS, Drews K, Chan CL. Normal hemoglobin A1c variability in early adolescence: adult criteria for prediabetes should be applied with caution. J Pediatr. 2020; 216: 232 ‐ 235.; Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: estimation procedures, 2011–2014. https://www.cdc.gov/nchs/data/series/sr_02/sr02_177.pdf. Accessed February 7, 2020.; Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: 2015–2016 data documentation, codebook, and frequencies. Glycohemoglobin. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/GLU_I.htm. Accessed February 7, 2020.; Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed October 21, 2019.; Andes LJ, Cheng YJ, Rolka DB, Gregg EW, Imperatore G. Prevalence of prediabetes among adolescents and young adults in the United States, 2005‐2016. JAMA Pediatr. 2020; 174 ( 2 ): e194498.; Menke A, Casagrande S, Cowie CC. Contributions of A1c, fasting plasma glucose, and 2‐hour plasma glucose to prediabetes prevalence: NHANES 2011‐2014. Ann Epidemiol. 2018; 28: 681 ‐ 685.; Lee JM, Eason A, Nelson C, Kazzi NG, Cowan AE, Tarini BA. Screening practices for identifying type 2 diabetes in adolescents. J Adolesc Health. 2014; 54 ( 2 ): 139 ‐ 143.; Cohen RM. A1C: does one size fit all? Diabetes Care. 2007; 30 ( 10 ): 2756 ‐ 2758.

9
Academic Journal

File Description: application/pdf

Relation: Ma, Ying; Cui, Danrui; Xiong, Xiufang; Inuzuka, Hiroyuki; Wei, Wenyi; Sun, Yi; North, Brian J.; Zhao, Yongchao (2019). "SCFβ‐TrCP ubiquitinates CHK1 in an AMPK‐dependent manner in response to glucose deprivation." Molecular Oncology 13(2): 307-321.; https://hdl.handle.net/2027.42/147790; Molecular Oncology; Warburg O ( 1956 ) On the origin of cancer cells. Science 123, 309 – 314.; Lin SC and Hardie DG ( 2018 ) AMPK: Sensing glucose as well as cellular energy status. Cell Metab 27, 299 – 313.; Liu Y, Vidanes G, Lin YC, Mori S and Siede W ( 2000 ) Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA‐damage‐induced M‐phase arrest. Mol Gen Genet 262, 1132 – 1146.; McGranahan N and Swanton C ( 2017 ) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613 – 628.; Papp‐Szabo E, Josephy PD and Coomber BL ( 2005 ) Microenvironmental influences on mutagenesis in mammary epithelial cells. Int J Cancer 116, 679 – 685.; Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L, Mansukhani M, Murty VV, Gaciong Z and Meek SE et al. ( 2005 ) Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7, 193 – 204.; Setoyama D, Yamashita M and Sagata N ( 2007 ) Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA 104, 18001 – 18006.; Skinner SA, Tutton PJ and O’Brien PE ( 1990 ) Microvascular architecture of experimental colon tumors in the rat. Cancer Res 50, 2411 – 2417.; Su H, Yang F, Wang Q, Shen Q, Huang J, Peng C, Zhang Y, Wan W, Wong CCL, Sun Q et al. ( 2017 ) VPS34 Acetylation controls its lipid kinase activity and the initiation of canonical and non‐canonical autophagy. Mol Cell 67 ( 907–921 ), e907.; Vegran F, Boidot R, Michiels C, Sonveaux P and Feron O ( 2011 ) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF‐kappaB/IL‐8 pathway that drives tumor angiogenesis. Cancer Res 71, 2550 – 2560.; Wang Z, Liu P, Inuzuka H and Wei W ( 2014 ) Roles of F‐box proteins in cancer. Nat Rev Cancer 14, 233 – 247.; Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK and Chen CS ( 2009 ) Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up‐regulation of beta‐transducin repeat‐containing protein. Mol Pharmacol 76, 47 – 57.; Wei S, Yang HC, Chuang HC, Yang J, Kulp SK, Lu PJ, Lai MD and Chen CS ( 2008 ) A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells. J Biol Chem 283, 26759 – 26770.; Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J and Hu X ( 2012 ) Central role of lactic acidosis in cancer cell resistance to glucose deprivation‐induced cell death. J Pathol 227, 189 – 199.; Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R and Pan ZQ ( 2008 ) Autoinhibitory regulation of SCF‐mediated ubiquitination by human cullin 1’s C‐terminal tail. Proc Natl Acad Sci USA 105, 12230 – 12235.; Yuan J and Glazer PM ( 1998 ) Mutagenesis induced by the tumor microenvironment. Mutat Res 400, 439 – 446.; Zeman MK and Cimprich KA ( 2014 ) Causes and consequences of replication stress. Nat Cell Biol 16, 2 – 9.; Zhang YW, Brognard J, Coughlin C, You Z, Dolled‐Filhart M, Aslanian A, Manning G, Abraham RT, and Hunter T ( 2009 ) The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell 35, 442 – 453.; Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M et al. ( 2017a ) Fructose‐1,6‐bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112 – 116.; Zhang R, Huang SY, Ka‐Wai Li K, Li YH, Hsu WH, Zhang GJ, Chang CJ and Yang JY ( 2017b ) Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through beta‐TrCP‐mediated proteasome degradation. Oncotarget 8, 49869 – 49881.; Zhang Y and Hunter T ( 2014 ) Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 134, 1013 – 1023.; Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F and Abraham RT ( 2005 ) Genotoxic stress targets human Chk1 for degradation by the ubiquitin‐proteasome pathway. Mol Cell 19, 607 – 618.; Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, Wang H, Luo W, Chen Y, Chen H et al. ( 2016 ) AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447 – 1459.; Zhao Y and Sun Y ( 2013 ) Cullin‐RING Ligases as attractive anti‐cancer targets. Curr Pharm Des 19, 3215 – 3225.; Zhao Y, Xiong X and Sun Y ( 2011 ) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44, 304 – 316.; Annibaldi A and Widmann C ( 2010 ) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13, 466 – 470.; Bartek J and Lukas J ( 2003 ) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421 – 429.; Bergers G and Benjamin LE ( 2003 ) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401 – 410.; Chen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, Dewhirst M, West M and Chi JT ( 2008 ) The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 4, e1000293.; Chu PC, Chuang HC, Kulp SK and Chen CS ( 2012 ) The mRNA‐stabilizing factor HuR protein is targeted by beta‐TrCP protein for degradation in response to glycolysis inhibition. J Biol Chem 287, 43639 – 43650.; Dai X, North BJ and Inuzuka H ( 2014 ) Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget 5, 3307 – 3315.; Dai C, Sun F, Zhu C and Hu X ( 2013 ) Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability–an implication in aneuploid human tumors. PLoS ONE 8, e63054.; Denko NC ( 2008 ) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705 – 713.; Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan L, Zhai B, Chin YR, Shaik S et al. ( 2011 ) mTOR drives its own activation via SCF(betaTrCP)‐dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44, 290 – 303.; Goto H, Kasahara K and Inagaki M ( 2015 ) Novel insights into Chk1 regulation by phosphorylation. Cell Struct Funct 40, 43 – 50.; Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ ( 2008 ) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214 – 226.; Hanahan D and Weinberg RA ( 2011 ) Hallmarks of cancer: the next generation. Cell 144, 646 – 674.; Hardie DG, Ross FA and Hawley SA ( 2012 ) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251 – 262.; Hawley SA, Gadalla AE, Olsen GS and Hardie DG ( 2002 ) The antidiabetic drug metformin activates the AMP‐activated protein kinase cascade via an adenine nucleotide‐independent mechanism. Diabetes 51, 2420 – 2425.; Huh J and Piwnica‐Worms H ( 2013 ) CRL4(CDT2) targets CHK1 for PCNA‐independent destruction. Mol Cell Biol 33, 213 – 226.; Inuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, Chin YR, Zhai B, Shaik S and Law AW et al. ( 2012 ) Acetylation‐dependent regulation of Skp2 function. Cell 150, 179 – 193.; Kim AJ, Kim HJ, Jee HJ, Song N, Kim M, Bae YS, Chung JH and Yun J ( 2011 ) Glucose deprivation is associated with Chk1 degradation through the ubiquitin‐proteasome pathway and effective checkpoint response to replication blocks. Biochim Biophys Acta 1813, 1230 – 1238.; Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M and Viollet B ( 2006 ) 5′‐AMP‐activated protein kinase (AMPK) is induced by low‐oxygen and glucose deprivation conditions found in solid‐tumor microenvironments. Mol Cell Biol 26, 5336 – 5347.; Lassot I, Segeral E, Berlioz‐Torrent C, Durand H, Groussin L, Hai T, Benarous R and Margottin‐Goguet F ( 2001 ) ATF4 degradation relies on a phosphorylation‐dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 21, 2192 – 2202.; Lau AW, Fukushima H and Wei W ( 2012 ) The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed) 17, 2197 – 2212.; Leung‐Pineda V, Huh J and Piwnica‐Worms H ( 2009 ) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 69, 2630 – 2637.; Li X, Dai X, Wan L, Inuzuka H, Sun L and North BJ ( 2016 ) Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget 7, 26057 – 26069.; Li P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y, Kiyono T and Inagaki M ( 2012 ) P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell 23, 1582 – 1592.

10
Report

Contributors: Medical - African Health OER Network

File Description: application/zip

Relation: Yeboah, Francis; Engleberg, Cary. (2010-10-26). Clinical Chemistry (Glucose Tolerance Test). Retrieved from Open.Michigan - Educational Resources Web site: http://open.umich.edu; https://hdl.handle.net/2027.42/133117

11
Academic Journal

File Description: application/pdf

Relation: Hutch, Chelsea R.; Sandoval, Darleen A. (2017). "Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution?." Annals of the New York Academy of Sciences 1391(1): 5-19.; http://hdl.handle.net/2027.42/136393; Annals of the New York Academy of Sciences; Beenken, A. & M. Mohammadi. 2009. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8: 235 – 253.; Liou, A.P. et al. 2013. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5: 178ra41.; Li, J.V. et al. 2011. Metabolic surgery profoundly influences gut microbial–host metabolic cross‐talk. Gut 60: 1214 – 1223.; Li, J.V. et al. 2011. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front. Microbiol. 2: 183.; Gao, Z. et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58: 1509 – 1517.; Vrieze, A. et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143: 913 – 916.e7.; Sayin, S.I. et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17: 225 – 235.; Groos, S., G. Hünefeld & L. Luciano. 2001. Epithelial cell turnover–extracellular matrix relationship in the small intestine of human adults. Ital. J. Anat. Embryol. 106: 353 – 361.; Shaw, D., K. Gohil & M.D. Basson. 2012. Intestinal mucosal atrophy and adaptation. World J. Gastroenterol. 18: 6357 – 6375.; Drozdowski, L.A., M.T. Clandinin & A.B.R. Thomson. 2009. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J. Gastroenterol. 15: 774 – 787.; Iqbal, C.W., H.G. Qandeel, Y. Zheng, et al. 2008. Mechanisms of ileal adaptation for glucose absorption after proximal‐based small bowel resection. J. Gastrointest. Surg. 12: 1854–1864; discussion 1864 – 1865.; le Roux, C.W. et al. 2010. Gut hypertrophy after gastric bypass is associated with increased glucagon‐like peptide 2 and intestinal crypt cell proliferation. Ann. Surg. 252: 50 – 56.; Taqi, E. et al. 2010. The influence of nutrients, biliary–pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux‐en‐Y bypass model. J. Pediatr. Surg. 45: 987 – 995.; Li, B., Y. Lu, C.B. Srikant, et al. 2013. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal–jejunal bypass surgery in Zucker fatty rats. Am. J. Physiol. Gastrointest. Liver Physiol. 304: G635 – G645.; Habegger, K.M. et al. 2013. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut 63: 1238 – 1246.; Cavin, J.‐B. et al. 2015. Differences in alimentary glucose absorption and intestinal disposal of blood glucose following Roux‐en‐Y gastric bypass vs sleeve gastrectomy. Gastroenterology 150: 454 – 464.e9.; Mumphrey, M.B., Z. Hao, R.L. Townsend, et al. 2015. Sleeve gastrectomy does not cause hypertrophy and reprogramming of intestinal glucose metabolism in rats. Obes. Surg. 25: 1468 – 1473.; Beyaz, S. et al. 2016. High‐fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531: 53 – 58.; Makary, M.A. et al. 2010. Medication utilization and annual health care costs in patients with type 2 diabetes mellitus before and after bariatric surgery. Arch. Surg. 145: 726 – 731.; Sjöström, L. et al. 2007. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357: 741 – 752.; Adams, T.D. et al. 2007. Long‐term mortality after gastric bypass surgery. N. Engl. J. Med. 357: 753 – 761.; Pontiroli, A.E. & A. Morabito. 2011. Long‐term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta‐analysis of trials performed with gastric banding and gastric bypass. Ann. Surg. 253: 484 – 487.; Ashrafian, H. et al. 2011. Metabolic surgery and cancer: protective effects of bariatric procedures. Cancer 117: 1788 – 1799.; Sjöström, L. et al. 2014. Association of bariatric surgery with long‐term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311: 2297 – 2304.; Rubino, F., P.R. Schauer, L.M. Kaplan & D.E. Cummings. 2010. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu. Rev. Med. 61: 393 – 411.; Stefater, M.A., H.E. Wilson‐Pérez, A.P. Chambers, et al. 2012. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr. Rev. 33: 595 – 622.; Seeley, R.J., A.P. Chambers & D.A. Sandoval. 2015. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21: 369 – 378.; Vidal, J., A. Jiménez, A. de Hollanda, et al. 2015. Metabolic surgery in type 2 diabetes: Roux‐en‐Y gastric bypass or sleeve gastrectomy as procedure of choice? Curr. Atheroscler. Rep. 17: 58.; Chambers, A.P. et al. 2011. Weight‐independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 141: 950 – 958.; Calanna, S. et al. 2013. Secretion of glucagon‐like peptide‐1 in patients with type 2 diabetes mellitus: systematic review and meta‐analyses of clinical studies. Diabetologia 56: 965 – 972.; Myronovych, A. et al. 2013. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight‐loss‐independent manner. Obesity (Silver Spring) 22: 390 – 400.; Pournaras, D.J. et al. 2012. The role of bile after Roux‐en‐Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153: 3613 – 3619.; Mumphrey, M.B., L.M. Patterson, H. Zheng & H.‐R. Berthoud. 2013. Roux‐en‐Y gastric bypass surgery increases number but not density of CCK‐, GLP‐1‐, 5‐HT‐, and neurotensin‐expressing enteroendocrine cells in rats. Neurogastroenterol. Motil. 25: e70 – e79.; Rutledge, R. 2001. The mini‐gastric bypass: experience with the first 1,274 cases. Obes. Surg. 11: 276 – 280.; Lee, D.Y. et al. 2012. Outcomes of laparoscopic Roux‐en‐Y gastric bypass versus laparoscopic adjustable gastric banding in adolescents. Obes. Surg. 22: 1859 – 1864.; Chang, S.‐H. et al. 2014. The effectiveness and risks of bariatric surgery: an updated systematic review and meta‐analysis, 2003–2012. JAMA Surg. 149: 275 – 287.; Schauer, P.R. et al. 2014. Bariatric surgery versus intensive medical therapy for diabetes—3‐year outcomes. N. Engl. J. Med. 370: 2002 – 2013.; Mingrone, G. et al. 2012. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366: 1577 – 1585.; Buchwald, H. et al. 2004. Bariatric surgery: a systematic review and meta‐analysis. JAMA 292: 1724 – 1737.; Schauer, P.R. et al. 2012. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366: 1567 – 1576.; Camastra, S. et al. 2011. Early and longer term effects of gastric bypass surgery on tissue‐specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia 54: 2093 – 2102.; Kashyap, S.R. et al. 2010. Acute effects of gastric bypass versus gastric restrictive surgery on β‐cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int. J. Obes. (Lond.) 34: 462 – 471.; Wickremesekera, K., G. Miller, T.D. Naotunne, et al. 2005. Loss of insulin resistance after Roux‐en‐Y gastric bypass surgery: a time course study. Obes. Surg. 15: 474 – 481.; Albers, P.H. et al. 2015. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309: R510 – R524.; Isbell, J.M. et al. 2010. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux‐en‐Y gastric bypass surgery. Diabetes Care 33: 1438 – 1442.; Campos, G.M. et al. 2010. Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost. J. Gastrointest. Surg. 14: 15 – 23.; Ferrannini, E. 2010. The stunned beta cell: a brief history. Cell Metab. 11: 349 – 352.; de Weijer, B.A. et al. 2013. Hepatic and peripheral insulin sensitivity do not improve 2 weeks after bariatric surgery. Obesity (Silver Spring) 21: 1143 – 1147.; Dunn, J.P. et al. 2012. Hepatic and peripheral insulin sensitivity and diabetes remission at 1 month after Roux‐en‐Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care 35: 137 – 142.; Bojsen‐Møller, K.N. et al. 2014. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux‐en‐Y gastric bypass. Diabetes 63: 1725 – 1737.; Bradley, D. et al. 2014. Matched weight loss induced by sleeve gastrectomy or gastric bypass similarly improves metabolic function in obese subjects. Obesity (Silver Spring) 22: 2026 – 2031.; Christiansen, M.P., P.A. Linfoot, R.A. Neese & M.K. Hellerstein. 2000. Effect of dietary energy restriction on glucose production and substrate utilization in type 2 diabetes. Diabetes 49: 1691 – 1699.; Yan, Y. et al. 2016. Roux‐en‐Y gastric bypass surgery suppresses hepatic gluconeogenesis and increases intestinal gluconeogenesis in a T2DM rat model. Obes. Surg. 1 – 8.; Chambers, A.P. et al. 2014. Regulation of gastric emptying rate and its role in nutrient‐induced GLP‐1 secretion in rats after vertical sleeve gastrectomy. Am. J. Physiol. Endocrinol. Metab. 306: E424 – E432.; Melissas, J. et al. 2007. Sleeve gastrectomy—a restrictive procedure? Obes. Surg. 17: 57.; Laferrere, B. et al. 2008. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93: 2479 – 2485.; Laferrère, B. et al. 2011. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3: 80re2.; Plum, L. et al. 2011. Comparison of glucostatic parameters after hypocaloric diet or bariatric surgery and equivalent weight loss. Obesity (Silver Spring) 19: 2149 – 2157.; Dutia, R. et al. 2014. Limited recovery of β‐cell function after gastric bypass despite clinical diabetes remission. Diabetes 63: 1214 – 1223.; Gregor, M.F. et al. 2009. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58: 693 – 700.; Sjöholm, K., E. Sjöström, L.M.S. Carlsson & M. Peltonen. 2015. Weight change‐adjusted effects of gastric bypass surgery on glucose metabolism: two‐ and 10‐year results from the Swedish Obese Subjects (SOS) study. Diabetes Care 39: 625 – 631.; Sheppard, C.E. et al. 2013. The economic impact of weight regain. Gastroenterol. Res. Pract. 2013: 379564.; Kojima, M. et al. 1999. Ghrelin is a growth‐hormone‐releasing acylated peptide from stomach. Nature 402: 656 – 660.; Tschöp, M., D.L. Smiley & M.L. Heiman. 2000. Ghrelin induces adiposity in rodents. Nature 407: 908 – 913.; Cone, J.J., J.E. McCutcheon & M.F. Roitman. 2014. Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J. Neurosci. 34: 4905 – 4913.; Wren, A.M. et al. 2001. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86: 5992.; Heppner, K.M. et al. 2014. Both acyl and des‐acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors. Diabetes 63: 122 – 131.; Reimer, M.K., G. Pacini & B. Ahrén. 2003. Dose‐dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144: 916 – 921.; Tong, J. et al. 2010. Ghrelin suppresses glucose‐stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59: 2145 – 2151.; Vestergaard, E.T. et al. 2008. Acute effects of ghrelin administration on glucose and lipid metabolism. J. Clin. Endocrinol. Metab. 93: 438 – 444.; Karamanakos, S.N., K. Vagenas, F. Kalfarentzos & T.K. Alexandrides. 2008. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide‐YY levels after Roux‐en‐Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg. 247: 401 – 407.; Bohdjalian, A. et al. 2010. Sleeve gastrectomy as sole and definitive bariatric procedure: 5‐year results for weight loss and ghrelin. Obes. Surg. 20: 535 – 540.; Tymitz, K., A. Engel, S. McDonough, et al. 2011. Changes in ghrelin levels following bariatric surgery: review of the literature. Obes. Surg. 21: 125 – 130.; Cummings, D.E. et al. 2002. Plasma ghrelin levels after diet‐induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346: 1623 – 1630.; Korner, J. et al. 2005. Effects of Roux‐en‐Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J. Clin. Endocrinol. Metab. 90: 359 – 365.; Ryan, K.K. et al. 2014. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509: 183 – 188.; Faraj, M. et al. 2003. Plasma acylation‐stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 88: 1594 – 1602.; Chambers, A.P. et al. 2013. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology 144: 50 – 52.e5.; Nosso, G. et al. 2016. Comparative effects of Roux‐en‐Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one‐year prospective study. Horm. Metab. Res. 48: 312 – 317.; Sandoval, D.A. & D.A. D’Alessio. 2015. Physiology of proglucagon peptides: role of glucagon and GLP‐1 in health and disease. Physiol. Rev. 95: 513 – 548.; Vilsbøll, T., M. Christensen, A.E. Junker, et al. 2012. Effects of glucagon‐like peptide‐1 receptor agonists on weight loss: systematic review and meta‐analyses of randomised controlled trials. BMJ 344: d7771.; Jiménez, A. et al. 2014. GLP‐1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes 63: 3372 – 3377.; Jiménez, A., R. Casamitjana, J. Viaplana‐Masclans, et al. 2013. GLP‐1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery. Diabetes Care 36: 2062 – 2069.; Umeda, L.M. et al. 2011. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP‐1, and glucagon secretion in type 2 diabetic patients. Obes. Surg. 21: 896 – 901.; Peterli, R. et al. 2009. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux‐en‐Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250: 234 – 241.; Salehi, M., A. Gastaldelli & D.A. D’Alessio. 2014. Blockade of glucagon‐like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology 146: 669 – 680.e2.; Shah, M. et al. 2014. Contribution of endogenous glucagon‐like peptide 1 to glucose metabolism after Roux‐en‐Y gastric bypass. Diabetes 63: 483 – 493.; Salehi, M., R.L. Prigeon & D.A. D’Alessio. 2011. Gastric bypass surgery enhances glucagon‐like peptide 1‐stimulated postprandial insulin secretion in humans. Diabetes 60: 2308 – 2314.; Sandoval, D.A., D. Bagnol, S.C. Woods, et al. 2008. Arcuate glucagon‐like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57: 2046 – 2054.; Smith, E.P. et al. 2014. The role of β cell glucagon‐like peptide‐1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 19: 1050 – 1057.; Ye, J. et al. 2014. GLP‐1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306: R352 – R362.; Wilson‐Pérez, H.E. et al. 2013. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon‐like peptide‐1 receptor deficiency. Diabetes 62: 2380 – 2385.; Mokadem, M., J.F. Zechner, R.F. Margolskee, et al. 2014. Effects of Roux‐en‐Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon‐like peptide‐1 deficiency. Mol. Metab. 3: 191 – 201.; Peterli, R. et al. 2012. Metabolic and hormonal changes after laparoscopic Roux‐en‐Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg. 22: 740 – 748.; Jacobsen, S.H. et al. 2012. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta‐cell function within 2 weeks after gastric bypass in non‐diabetic subjects. Obes. Surg. 22: 1084 – 1096.; Romero, F. et al. 2012. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux‐En‐Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg. Endosc. 26: 2231 – 2239.; Lee, C.J. et al. 2013. Hormonal response to a mixed‐meal challenge after reversal of gastric bypass for hypoglycemia. J. Clin. Endocrinol. Metab. 98: E1208 – E1212.; Dimitriadis, E. et al. 2013. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann. Surg. 257: 647 – 654.; le Roux, C.W. et al. 2007. Gut hormones as mediators of appetite and weight loss after Roux‐en‐Y gastric bypass. Ann. Surg. 246: 780 – 785.; Korner, J. et al. 2009. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux‐en‐Y gastric bypass. Int. J. Obes. 33: 786 – 795.; Rodgers, R.J., M.H. Tschöp & J.P.H. Wilding. 2012. Anti‐obesity drugs: past, present and future. Dis. Model. Mech. 5: 621 – 626.; Alphonse, P.A.S. & P.J.H. Jones. 2016. Revisiting human cholesterol synthesis and absorption: the reciprocity paradigm and its key regulators. Lipids 51: 519 – 536.; Porez, G., J. Prawitt, B. Gross & B. Staels. 2012. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 53: 1723 – 1737.; Katsuma, S., A. Hirasawa & G. Tsujimoto. 2005. Bile acids promote glucagon‐like peptide‐1 secretion through TGR5 in a murine enteroendocrine cell line STC‐1. Biochem. Biophys. Res. Commun. 329: 386 – 390.; Cariou, B. et al. 2006. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281: 11039 – 11049.; Watanabe, M. et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439: 484 – 489.; Lefebvre, P., B. Cariou, F. Lien, et al. 2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89: 147 – 191.; Haeusler, R.A., B. Astiarraga, S. Camastra, et al. 2013. Human insulin resistance is associated with increased plasma levels of 12α‐hydroxylated bile acids. Diabetes 62: 4184 – 4191.; Nyhlin, H., G. Brydon, A. Danielsson & F. Eriksson. 1990. Bile acid malabsorption after intestinal bypass surgery for obesity. A comparison between jejunoileal shunt and biliointestinal bypass. Int. J. Obes. 14: 47 – 55.; Patti, M.E. et al. 2009. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17: 1671 – 1677.; Kohli, R. et al. 2013. Weight loss induced by Roux‐en‐Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J. Clin. Endocrinol. Metab. 98: E708 – E712.; Nakatani, H. et al. 2009. Serum bile acid along with plasma incretins and serum high‐molecular weight adiponectin levels are increased after bariatric surgery. Metabolism 58: 1400 – 1407.; De Giorgi, S. et al. 2015. Long‐term effects of Roux‐en‐Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a cross‐sectional pilot study. Clin. Nutr. 34: 911 – 917.; Dutia, R. et al. 2015. Temporal changes in bile acid levels and 12α‐hydroxylation after Roux‐en‐Y gastric bypass surgery in type 2 diabetes. Int. J. Obes. (Lond.) 39: 806 – 813.; Ahmad, N.N., A. Pfalzer & L.M. Kaplan. 2013. Roux‐en‐Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int. J. Obes. (Lond.) 37: 1553 – 1559.; Spinelli, V. et al. 2016. Influence of Roux‐en‐Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. Int. J. Obes. (Lond.) 40: 1260 – 1267.; Albaugh, V.L. et al. 2015. Early increases in bile acids post Roux‐en‐Y gastric bypass are driven by insulin‐sensitizing, secondary bile acids. J. Clin. Endocrinol. Metab. 100: E1225 – E1233.; Strader, A.D., T.R. Clausen, S.Z. Goodin & D. Wendt. 2009. Ileal interposition improves glucose tolerance in low dose streptozotocin‐treated diabetic and euglycemic rats. Obes. Surg. 19: 96 – 104.; Strader, A.D. et al. 2005. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 288: E447 – E453.; Kohli, R. et al. 2010. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity‐related comorbidities. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G652 – G660.; Steinert, R.E. et al. 2013. Bile acids and gut peptide secretion after bariatric surgery: a 1‐year prospective randomized pilot trial. Obesity (Silver Spring) 21: E660 – E668.; Haluzíková, D. et al. 2013. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF‐19 and FGF‐21 in morbidly obese subjects. Obesity (Silver Spring) 21: 1335 – 1342.; Flynn, C.R. et al. 2015. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat. Commun. 6: 7715.; Ferrannini, E. et al. 2015. Increased bile acid synthesis and deconjugation after biliopancreatic diversion. Diabetes 64: 3377 – 3385.; Mi, L.‐Z. et al. 2003. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol. Cell 11: 1093 – 1100.; Cicione, C., C. Degirolamo & A. Moschetta. 2012. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 56: 2404 – 2411.; Fu, L. et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin‐deficient diabetes. Endocrinology 145: 2594 – 2603.; Escalona, A. et al. 2016. Bile acid synthesis decreases after laparoscopic sleeve gastrectomy. Surg. Obes. Relat. Dis. 12: 763 – 769.; Thomas, C., J. Auwerx & K. Schoonjans. 2008. Bile acids and the membrane bile acid receptor TGR5–connecting nutrition and metabolism. Thyroid 18: 167 – 174.; Thomas, C. et al. 2009. TGR5‐mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10: 167 – 177.; Sato, H. et al. 2007. Anti‐hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362: 793 – 798.; McGavigan, A.K. et al. 2015. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. doi:10.1136/gutjnl-2015-309871.; Ley, R.E. et al. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 102: 11070 – 11075.; Tremaroli, V. & F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489: 242 – 249.; Karlsson, F., V. Tremaroli, J. Nielsen & F. Bäckhed. 2013. Assessing the human gut microbiota in metabolic diseases. Diabetes 62: 3341 – 3349.; Sommer, F. & F. Bäckhed. 2013. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol. 11: 227 – 238.; Turnbaugh, P.J. et al. 2006. An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027 – 1031.; Aron‐Wisnewsky, J. & K. Clement. 2014. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr. Atheroscler. Rep. 16: 454.; Zhang, H. et al. 2009. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. U.S.A. 106: 2365 – 2370.; Kong, L.‐C. et al. 2013. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am. J. Clin. Nutr. 98: 16 – 24.; Furet, J.‐P. et al. 2010. Differential adaptation of human gut microbiota to bariatric surgery‐induced weight loss: links with metabolic and low‐grade inflammation markers. Diabetes 59: 3049 – 3057.; Graessler, J. et al. 2013. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 13: 514 – 522.; Tremaroli, V. et al. 2015. Roux‐en‐Y gastric bypass and vertical banded gastroplasty induce long‐term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22: 228 – 238.; Ley, R.E., P.J. Turnbaugh, S. Klein & J.I. Gordon. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022 – 1023.; Schwiertz, A. et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18: 190 – 195.

12
Academic Journal

File Description: application/pdf

Relation: Perinpam, Majuran; Ware, Erin B.; Smith, Jennifer A.; Turner, Stephen T.; Kardia, Sharon L. R.; Lieske, John C. (2017). "Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration." Physiological Reports (19): n/a-n/a.; http://hdl.handle.net/2027.42/138855; Physiological Reports; R Development Core Team. 2008. A language and environment for statistical computing. Vienna, Austria. ISBN 3‐900051‐07‐0, URL: R Foundation for Statistical Computing. pp. http://www.R-project.org.; Li, H., D. E. Klett, R. Littleton, J. S. Elder, and J. D. Sammon. 2014. Role of insulin resistance in uric acid nephrolithiasis. World J. Nephrol. 3: 237 – 242.; Maalouf, N. M., K. Sakhaee, J. H. Parks, F. L. Coe, B. Adams‐Huet, and C. Y. Pak. 2004. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 65: 1422 – 1425.; Maalouf, N. M., M. A. Cameron, O. W. Moe, and K. Sakhaee. 2010. Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 5: 1277 – 1281.; MacDonald, M. J., M. J. Longacre, T. F. Warner, and A. Thonpho. 2013. High level of ATP citrate lyase expression in human and rat pancreatic islets. Horm. Metab. Res. 45: 391 – 393.; Mandel, E. I., E. N. Taylor, and G. C. Curhan. 2013. Dietary and lifestyle factors and medical conditions associated with urinary citrate excretion. Clin. J. Am. Soc. Nephrol. 8: 901 – 908.; Martin, D. B., and P. R. Vagelos. 1962. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J. Biol. Chem. 237: 1787 – 1792.; Moseley, K. F., C. M. Weaver, L. Appel, A. Sebastian, and D. E. Sellmeyer. 2013. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J. Bone Miner. Res. 28: 497 – 504.; Oh, M. S. 1989. A new method for estimating G‐I absorption of alkali. Kidney Int. 36: 915 – 917.; Otsuki, M., T. Kitamura, K. Goya, H. Saito, M. Mukai, S. Kasayama, et al. 2011. Association of urine acidification with visceral obesity and the metabolic syndrome. Endocr. J. 58: 363 – 367.; Pajor, A. M. 1995. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J. Biol. Chem. 270: 5779 – 5785.; Parks, J. H., E. Goldfisher, J. R. Asplin, and F. L. Coe. 2002. A single 24‐hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J. Urol. 167: 1607 – 1612.; Pearle, M. S., D. S. Goldfarb, D. G. Assimos, G. Curhan, C. J. Denu‐Ciocca, B. R. Matlaga, et al. 2014. Medical management of kidney stones: AUA guideline. J. Urol. 192: 316 – 324.; Pigna, F., K. Sakhaee, B. Adams‐Huet, and N. M. Maalouf. 2014. Body fat content and distribution and urinary risk factors for nephrolithiasis. Clin. J. Am. Soc. Nephrol. 9: 159 – 165.; Powell, C. R., M. L. Stoller, B. F. Schwartz, C. Kane, D. L. Gentle, J. E. Bruce, and S. W., Leslie. 2000. Impact of body weight on urinary electrolytes in urinary stone formers. Urology 55: 825 – 830.; Rule, A. D., K. R. Bailey, J. C. Lieske, P. A. Peyser, and S. T. Turner. 2013. Estimating the glomerular filtration rate from serum creatinine is better than from cystatin C for evaluating risk factors associated with chronic kidney disease. Kidney Int. 83: 1169 – 1176.; Ryall, R. L. 1997. Urinary inhibitors of calcium oxalate crystallization and their potential role in stone formation. World J. Urol. 15: 155 – 164.; Sacks, D. B. 2011. A1C versus glucose testing: a comparison. Diabetes Care 34: 518 – 523.; Sakhaee, K. 2014. Epidemiology and clinical pathophysiology of uric acid kidney stones. J. Nephrol. 27: 241 – 245.; Sakhaee, K., R. H. Williams, M. S. Oh, P. Padalino, B. Adams‐Huet, P. Whitson, and C. Y. Pak. 1993. Alkali absorption and citrate excretion in calcium nephrolithiasis. J. Bone Miner. Res. 8: 789 – 794.; Saltiel, A. R., and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799 – 806.; Scales, C. D. Jr, A. C. Smith, J. M. Hanley, and C. S. Saigal. 2012. Prevalence of kidney stones in the United States. Eur. Urol. 62: 160 – 165.; Simpson, D. P. 1967. Regulation of renal citrate metabolism by bicarbonate ion and pH: observations in tissue slices and mitochondria. J. Clin. Invest. 46: 225 – 238.; Trinchieri, A., A. Mandressi, P. Luongo, F. Rovera, and G. Longo. 1992. Urinary excretion of citrate, glycosaminoglycans, magnesium and zinc in relation to age and sex in normal subjects and in patients who form calcium stones. Scand. J. Urol. Nephrol. 26: 379 – 386.; Zuckerman, J. M., and D. G. Assimos. 2009. Hypocitraturia: pathophysiology and medical management. Rev. Urol. 11: 134 – 144.; Daniels, P. R., S. L. Kardia, C. L. Hanis, C. A. Brown, R. Hutchinson, E. Boerwinkle, et al. 2004. Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Am. J. Med. 116: 676 – 681.; Daudon, M., O. Traxer, P. Conort, B. Lacour, and P. Jungers. 2006. Type 2 diabetes increases the risk for uric acid stones. J. Am. Soc. Nephrol. 17: 2026 – 2033.; Eisner, B. H., S. P. Porten, S. K. Bechis, and M. L. Stoller. 2010. The role of race in determining 24‐hour urine composition in white and Asian/Pacific Islander stone formers. J. Urol. 183: 1407 – 1411.; Friedlander, J. I., D. M. Moreira, C. Hartman, S. E. Elsamra, A. D. Smith, and Z. Okeke, et al. 2014. Age‐related changes in 24‐hour urine composition must be considered in the medical management of nephrolithiasis. J. Endourol. 28: 871 – 876.; Gershman, B., S. Sheth, S. P. Dretler, B. Herrick, K. Lang, V. M. Pais, Jr., and B. H., Eisner. 2012. Relationship between glomerular filtration rate and 24‐hour urine composition in patients with nephrolithiasis. Urology 80: 38 – 42.; Hess, B., U. Hasler‐Strub, D. Ackerman, and P. Jaeger. 1997. Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol. Dial. Transplant. 12: 1362 – 1368.; Ho, H. T., B. C. Ko, A. K. Cheung, A. K. Lam, S. Tam, S. K. Chung, and S. S., Chung. 2007. Generation and characterization of sodium‐dicarboxylate cotransporter‐deficient mice. Kidney Int. 72: 63 – 71.; Hosking, D. H., J. W. Wilson, R. R. Liedtke, L. H. Smith, and D. M. Wilson. 1985. Urinary citrate excretion in normal persons and patients with idiopathic calcium urolithiasis. J. Lab. Clin. Med. 106: 682 – 689.; Inker, L. A., C. H. Schmid, H. Tighiouart, J. H. Eckfeldt, H. I. Feldman, T. Greene, et al. 2012. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367: 20 – 29.; Kristal, A. R., A. S. Kolar, J. L. Fisher, J. J. Plascak, P. J. Stumbo, R. Weiss, and E. D. Paskett. 2014. Evaluation of web‐based, self‐administered, graphical food frequency questionnaire. J. Acad. Nutr. Diet. 114: 613 – 621.

13
Academic Journal

File Description: application/pdf

Relation: Brown‐deacon, Cheryl; Brown, Terri; Creech, Constance; McFarland, Marilyn; Nair, Anupama; Whitlow, Kevin (2017). "Can followâ up phone calls improve patients selfâ monitoring of blood glucose?." Journal of Clinical Nursing 26(1-2): 61-67.; https://hdl.handle.net/2027.42/135418; Journal of Clinical Nursing; American Diabetes Association ( 2014 ) Executive summary: Standards of medical care in diabetesâ 2014. Diabetes Care 37 ( Supp1 ), S5 â S13.; CDC National Diabetes Statistic Report 2014. Available at: http://www.cdc.gov/diabetes/pubs/estimates14.htm (accessed 26 June 2014).; McMahon GT, Fonda SJ, Gones HE, Alexis GM & Colin PR ( 2012 ) A randomized comparison of onlineâ line and telephone based care management with internet training alone in adult patients with poorly controlled type 2 diabetes. Diabetes Technology & Therapeutics 14, 1060 â 1067.; Mitchie S, Miles J & Weinman J ( 2002 ) Patient centeredness in chronic illness: what is it and what does it matter. Patient Education and Counseling 51, 197 â 206.; Nesari M, Zakerimoghadam M, Rajab A, Bassampour S & Faghihzadeh S ( 2010 ) Effect of telephone followâ up on adherence to a diabetes therapeutic regimen. Japan Journal of Nursing Science 7, 121 â 128.; Nundy S, Dick JJ, Solomon NC & Peek ME ( 2013 ) Developing a behavioral model for mobile phoneâ based diabetes intervention. Patient Education and Counseling 90, 125 â 132.; Piettek JD, Weinberger M & McPhee SJ ( 2000 ) The effect of automated calls with telephone nurse followâ up on patientâ centered outcomes of diabetes care: a randomized control trial. Medical Care 38, 218 â 230.; Schechter CB, Cohen HW, Shumkler C & Walker EA ( 2012 ) Intervention costs and costâ effectiveness of a successful telephonic intervention to promote diabetes care control. Diabetes Care 33, 2156 â 2160.; Stone RA, Rao RH, Sevic MA, Cheng C, Hough LJ, MacPherson DS & DeRubertis FR ( 2010 ) Active care management supported by home telemonitoring in veterans with type 2 diabetes. Diabetes Care 33, 478 â 484.; Walker EA, Shmukler C, Ullman R, Blanco E, Scollanâ Koliopoulus M & Cohen HW ( 2011 ) Results of a successful telephonic intervention to improve diabetes control in urban adults. Diabetes Care 34, 1 â 7.; Wong KWL, Wong FYK & Chan FC ( 2005 ) Effects of nurseâ initiated telephone followâ up on selfâ efficacy among patient with chronic obstructive pulmonary disease. Journal of Advance Nursing 49, 210 â 222.; World Health Organization Bulletin ( 2013 ) Fact Sheet N°312. Available at: http://www.who.int/mediacentre/factsheets/fs312/end.; Zolfaghari M, Mousavifar SA, Pedhram S & Haghani H ( 2012 ) The impact of nurse short message services and telephone followâ ups on diabetic adherence: which one is more effective? Journal of Clinical Nursing 21, 1922 â 1931.

14
Academic Journal

Contributors: Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109‐1055, USA

File Description: application/pdf

Relation: Cha, Kyoung Ha; Qin, Yu; Meyerhoff, Mark E. (2015). "Origin of Low Detection Limit and High Selectivity of Roche Accu‐Chek Test Strips that Enables Measurement of Tear Glucose Levels." Electroanalysis 27(3): 670-676.; http://hdl.handle.net/2027.42/110886; Electroanalysis; J. K. Lane, D. M. Krumholz, R. A. Sack, C. Morris, Curr. Eye Res. 2006, 31, 895 – 901.; G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, Lancet 2011, 378, 31 – 40.; Global Status Report on Noncommunicable Diseases 2010, World Health Organization, Geneva, 2011.; P. Zimmet, K. G. M. M. Alberti, J. Shaw, Nature 2001, 414, 782 – 787.; M. Brownlee, Nature 2001, 414, 813 – 820.; J. Hönes, P. Müller, N. Surridge, Diabetes Technol. Ther. 2008, 10, S 10 –S 26.; E. Minder, D. Albrecht, J. Schäfer, H. Zulewski, Diabetes Res. Clin. Pract. 2013, 101, 57 – 61.; J. T. Baca, C. R. Taormina, E. Feingold, D. N. Finegold, J. J. Grabowski, S. A. Asher, Clin. Chem. 2007, 53, 1370 – 1372; K. H. Cha, G. C. Jensen, A. S. Balijepalli, B. E. Cohan, M. E. Meyerhoff, Anal. Chem. 2014, 86, 1902 – 1908.; D. W. Burke, M. Marquant, Test Strip with Slot Vent Opening. U. S. Patent 8, 211, 379, July 3, 2012.; X. Yuan, M. Iijima, M. Oishi, Y. Nagasaki, Langmuir, 2008, 24, 6903 – 6909.; L. D. Smith, N. Budgen, S. J. Bungard, M. J. Danson, D. W. Hough, Biochem. J. 1989, 261, 973 – 977.; D. Fapyane, S. J. Lee, S. H. Kang, D. H. Lim, K. K. Cho, T. H. Nam, J. P. Ahn, J. H. Ahn, S. W. Kim, I. S. Chang, Phys. Chem. Chem. Phys. 2013, 15, 9508 – 9512.; R. Wilson, A. P. F. Turner, Biosens. Bioelectron. 1992, 7, 165 – 185.; Z. P. Tang, R. F. Louie, J. H. Lee, D. M. Lee, E. E. Miller, G. Kost, J. Crit. Care Med. 2001, 29, 1062 – 1070.; H. Yamaoka, K. Sode, Open Biotechnol. J. 2007, 1, 26 – 30.; C. K. M. Choy, P. Cho, W. Y. Chung, I. F. F. Benzie, Optom. Vis. Sci. 2003, 80, 632 – 636.; C. K. M. Choy, I. F. F. Benzie, P. Cho, Invest. Ophthalmol. Vis. Sci. 2000, 41, 3293 – 3298.; C. R. Taormina, J. T. Baca, S. A. Asher, J. J. Grabowski, J. Am. Soc. Mass. Spec. 2007, 18, 332 – 336.

16
Academic Journal

File Description: application/pdf

Relation: Park, Sung Kyun; Peng, Qing; Bielak, Lawrence F.; Silver, Kristi D.; Peyser, Patricia A.; Mitchell, Braxton D. (2016). "Arsenic exposure is associated with diminished insulin sensitivity in non‐diabetic Amish adults." Diabetes/Metabolism Research and Reviews 32(6): 565-571.; http://hdl.handle.net/2027.42/134096; Diabetes/Metabolism Research and Reviews; Tseng CH. The potential biological mechanisms of arsenic‐induced diabetes mellitus. Toxicol Appl Pharmacol 2004; 197 ( 2 ): 67 – 83.; Del Razo LM, Garcia‐Vargas GG, Valenzuela OL, et al. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross‐sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health 2011; 10: 73.; Diaz‐Villasenor A, Cruz L, Cebrian A, et al. Arsenic exposure and calpain‐10 polymorphisms impair the function of pancreatic beta‐cells in humans: a pilot study of risk factors for T2DM. PLoS One 2013; 8 ( 1 ): e51642.; Hsueh WC, Mitchell BD, Aburomia R, et al. Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish Family Diabetes Study. Diabetes Care 2000; 23 ( 5 ): 595 – 601.; Stumvoll M, Mitrakou A, Pimenta W, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000; 23 ( 3 ): 295 – 301.; Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22 ( 9 ): 1462 – 1470.; Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabetic Med: J Brit Diabetic Assoc 1994; 11 ( 3 ): 286 – 292.; Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28 ( 7 ): 412 – 419.; Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005; 113 ( 2 ): 192 – 200.; Rhee SY, Hwang YC, Woo JT, Chin SO, Chon S, Kim YS. Arsenic exposure and prevalence of diabetes mellitus in Korean adults. J Korean Med Sci 2013; 28 ( 6 ): 861 – 868.; Gribble MO, Howard BV, Umans JG, et al. Arsenic exposure, diabetes prevalence, and diabetes control in the Strong Heart Study. Am J Epidemiol 2012; 176 ( 10 ): 865 – 874.; Peng Q, Harlow SD, Park SK. Urinary arsenic and insulin resistance in US adolescents. Int J Hygiene Environ Health 2015; 218 ( 4 ): 407 – 413.; Otten J, Ahren B, Olsson T. Surrogate measures of insulin sensitivity vs the hyperinsulinaemic‐euglycaemic clamp: a meta‐analysis. Diabetologia 2014; 57 ( 9 ): 1781 – 1788.; Diaz‐Villasenor A, Burns AL, Hiriart M, Cebrian ME, Ostrosky‐Wegman P. Arsenic‐induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 2007; 225 ( 2 ): 123 – 133.; Priority list of hazardous substances [article online], 2014. Available from http://www.atsdr.cdc.gov/spl/. Accessed June 22 2015.; Hocking S, Samocha‐Bonet D, Milner KL, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 2013; 34 ( 4 ): 463 – 500.; Grashow R, Zhang J, Fang SC, et al. Inverse association between toenail arsenic and body mass index in a population of welders. Environ Res 2014; 131: 131 – 133.; Su CT, Lin HC, Choy CS, Huang YK, Huang SR, Hsueh YM. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents. Sci Total Environ 2012; 414: 152 – 158.; Yu ZM, Fung B, Murimboh JD, Parker L, Dummer TJ. What is the role of obesity in the aetiology of arsenic‐related disease? Environ Int 2014; 66: 115 – 123.; Gruber JF, Karagas MR, Gilbert‐Diamond D, et al. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population. Nutr J 2012; 11: 45.; Longnecker MP. On confounded fishy results regarding arsenic and diabetes. Epidemiology 2009; 20 ( 6 ): 821 – 823.; Navas‐Acien A, Silbergeld EK, Pastor‐Barriuso R, Guallar E. Rejoinder: Arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003‐2006. Epidemiology 2009; 20 ( 6 ): 816 – 820.; Steinmaus C, Yuan Y, Liaw J, Smith AH. Low‐level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology 2009; 20 ( 6 ): 807 – 815.; Kuo CC, Howard BV, Umans JG, et al. Arsenic exposure, arsenic metabolism, and incident diabetes in the strong heart study. Diabetes Care 2015; 38 ( 4 ): 620 – 627.; WHO. Waist Circumference and Waist‐to‐Hip Ratio. World Health Organization: Geneva, 2008.; Heikens A, Panaullah GM, Meharg AA. Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 2007; 189: 43 – 87.; Jones FT. A broad view of arsenic. Poult Sci 2007; 86 ( 1 ): 2 – 14.; Navas‐Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect 2006; 114 ( 5 ): 641 – 648.; Fu J, Woods CG, Yehuda‐Shnaidman E, et al. Low‐level arsenic impairs glucose‐stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 2010; 118 ( 6 ): 864 – 870.; Kuo CC, Moon K, Thayer KA, Navas‐Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 2013; 13 ( 6 ): 831 – 849.; Maull EA, Ahsan H, Edwards J, et al. Evaluation of the Association between Arsenic and Diabetes: A National Toxicology Program Workshop Review. Environ Health Perspect 2012; 120 ( 12 ): 1658 – 1670.; Abdul‐Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta‐cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006; 29 ( 5 ): 1130 – 1139.; Chiasson JL, Rabasa‐Lhoret R. Prevention of type 2 diabetes: insulin resistance and beta‐cell function. Diabetes 2004; 53 ( Suppl 3 ): S34 – 38.

17
Academic Journal

File Description: application/pdf

Relation: Kwon, Oh Jin; Park, Jung Je; Ko, Gyung Hyuck; Seo, Ji Hyun; Jeong, Bae‐kwon; Kang, Ki Mun; Woo, Seung Hoon; Kim, Jin Pyeong; Hwa, Jeong Seok; Carey, Thomas E. (2015). "HIFâ 1α and CAâ IX as predictors of locoregional control for determining the optimal treatment modality for earlyâ stage laryngeal carcinoma." Head & Neck 37(4): 505-510.; https://hdl.handle.net/2027.42/110875; Head & Neck; Matsumoto M, Komiyama K, Okaue M, et al. Predicting tumor metastasis in patients with oral cancer by means of the proliferation marker Ki67. J Oral Sci 1999; 41: 53 – 56.; Jonathan RA, Wijffels KI, Peeters W, et al. The prognostic value of endogenous hypoxia‐related markers for head and neck squamous cell carcinomas treated with ARCON. Radiother Oncol 2006; 79: 288 – 297.; Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia‐inducible factor‐1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001; 61: 2911 – 2916.; Zagórska A, Dulak J. HIF‐1: the knowns and unknowns of hypoxia sensing. Acta Biochim Pol 2004; 51: 563 – 585.; Kaluz S, Kaluzová M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor‐ and hypoxia‐marker carbonic anhydrase 9: a one transcription factor (HIF‐1) show? Biochim Biophys Acta 2009; 1795: 162 – 172.; Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005; 202: 654 – 662.; Li DW, Zhou L, Jin B, Xie J, Dong P. Expression and significance of hypoxia‐inducible factor‐1α and survivin in laryngeal carcinoma tissue and cells. Otolaryngol Head Neck Surg 2013; 148: 75 – 81.; Ohba S, Fujii H, Ito S, et al. Overexpression of GLUT‐1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2010; 39: 74 – 78.; Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia‐inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 2002; 8: 2595 – 2604.; Eriksen JG, Overgaard J; Danish Head and Neck Cancer Study Group (DAHANCA). Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: an evaluation of the DAHANCA 5 study. Radiother Oncol 2007; 83: 383 – 388.; Lin PC, Lin YJ, Lee CT, Liu HS, Lee JC. Cyclooxygenase‐2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol Lett 2013; 6: 733 – 739.; Morita Y, Hata K, Nakanishi M, Nishisho T, Yura Y, Yoneda T. Cyclooxygenase‐2 promotes tumor lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol 2012; 41: 885 – 892.; Park BW, Park S, Park HS, et al. Cyclooxygenase‐2 expression in proliferative Ki‐67‐positive breast cancers is associated with poor outcomes. Breast Cancer Res Treat 2012; 133: 741 – 751.; Atula T, Hedström J, Ristimäki A, et al. Cyclooxygenase‐2 expression in squamous cell carcinoma of the oral cavity and pharynx: association to p53 and clinical outcome. Oncol Rep 2006; 16: 485 – 490.; Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation‐associated human nuclear antigen defined by the monoclonal antibody Ki‐67. J Immunol 1984; 133: 1710 – 1715.; Gerdes J, Li L, Schlueter C, et al. Immunobiochemical and molecular biologic characterization of the cell proliferation‐associated nuclear antigen that is defined by monoclonal antibody Ki‐67. Am J Pathol 1991; 138: 867 – 873.; Liu M, Lawson G, Delos M, et al. Predictive value of the fraction of cancer cells immunolabeled for proliferating cell nuclear antigen or Ki67 in biopsies of head and neck carcinomas to identify lymph node metastasis: comparison with clinical and radiologic examinations. Head Neck 2003; 25: 280 – 288.; Koo TR, Eom KY, Kang EY, et al. Prognostic value of the nodal ratio and ki‐67 expression in breast cancer patients treated with postmastectomy radiotherapy. J Breast Cancer 2013; 16: 274 – 284.; Montebugnoli L, Badiali G, Marchetti C, Cervellati F, Farnedi A, Foschini MP. Prognostic value of Ki67 from clinically and histologically ‘normal' distant mucosa in patients surgically treated for oral squamous cell carcinoma: a prospective study. Int J Oral Maxillofac Surg 2009; 38: 1165 – 1172.; Gonzalez–Moles MA, Ruiz–Avila I, Gil–Montoya JA, Esteban F, Bravo M. Analysis of Ki‐67 expression in oral squamous cell carcinoma: why Ki‐67 is not a prognostic indicator. Oral Oncol 2010; 46: 525 – 530.; Perisanidis C, Perisanidis B, Wrba F, et al. Evaluation of immunohistochemical expression of p53, p21, p27, cyclin D1, and Ki67 in oral and oropharyngeal squamous cell carcinoma. J Oral Pathol Med 2012; 41: 40 – 46.; Morais C, Johnson DW, Vesey DA, Gobe GC. Functional significance of erythropoietin in renal cell carcinoma. BMC Cancer 2013; 13: 14.; Henke M, Mattern D, Pepe M, et al. Do erythropoietin receptors on cancer cells explain unexpected clinical findings? J Clin Oncol 2006; 24: 4708 – 4713.; Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002; 7: 492 – 508.; Harrison LB, Shasha D, Homel P. Prevalence of anemia in cancer patients undergoing radiotherapy: prognostic significance and treatment. Oncology 2002; 63 Suppl 2: 11 – 18.; Mendenhall WM, Werning JW, Hinerman RW, Amdur RJ, Villaret DB. Management of T1–T2 glottic carcinomas. Cancer 2004; 100: 1786 – 1792.; Hosokawa Y, Okumura K, Terashima S, Sakakura Y. Radiation protective effect of hypoxia‐inducible factor‐1α (HIF‐1α) on human oral squamous cell carcinoma cell lines. Radiat Prot Dosimetry 2012; 152: 159 – 163.; Douglas CM, Bernstein JM, Ormston VE, et al. Lack of prognostic effect of carbonic anhydrase‐9, hypoxia inducible factor‐1α and bcl‐2 in 286 patients with early squamous cell carcinoma of the glottic larynx treated with radiotherapy. Clin Oncol (R Coll Radiol) 2013; 25: 59 – 65.; Rademakers SE, Hoogsteen IJ, Rijken PF, et al. Pattern of CAIX expression is prognostic for outcome and predicts response to ARCON in patients with laryngeal cancer treated in a phase III randomized trial. Radiother Oncol 2013; 108: 517 – 522.; Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153 – 156.; Boring CC, Squires TS, Tong T, Montgomery S. Cancer statistics, 1994. CA Cancer J Clin 1994; 44: 7 – 26.; Vaupel P, Mayer A, Höckel M. Tumor hypoxia and malignant progression. Methods Enzymol 2004; 381: 335 – 354.; Bussink J, Kaanders JH, van der Kogel AJ. Tumor hypoxia at the micro‐regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003; 67: 3 – 15.; Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 2009; 9: 442 – 458.; Schrijvers ML, van der Laan BF, de Bock GH, et al. Overexpression of intrinsic hypoxia markers HIF1alpha and CA‐IX predict for local recurrence in stage T1‐T2 glottic laryngeal carcinoma treated with radiotherapy. Int J Radiat Oncol Biol Phys 2008; 72: 161 – 169.; Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxia‐activated tumor pathways of angiogenesis and pH regulation independent of anemia in head‐and‐neck cancer. Int J Radiat Oncol Biol Phys 2004; 59: 67 – 71.; Hirasawa N, Itoh Y, Naganawa S, et al. Multi‐institutional analysis of early glottic cancer from 2000 to 2005. Radiat Oncol 2012; 7: 122.; Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 2007; 26: 241 – 248.; Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007; 26: 225 – 239.; Vordermark D, Brown JM. Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol 2003; 179: 801 – 811.; Alvarez Marcos CA, Llorente Pendás JL, Franco Gutiérrez V, et al. Tumour recurrence in squamous head and neck cancer [in Spanish]. Acta Otorrinolaringol Esp 2007; 58: 156 – 163.

18
Academic Journal

File Description: application/pdf

Relation: Miller, Richard A.; Harrison, David E.; Astle, Clinton M.; Fernandez, Elizabeth; Flurkey, Kevin; Han, Melissa; Javors, Martin A.; Li, Xinna; Nadon, Nancy L.; Nelson, James F.; Pletcher, Scott; Salmon, Adam B.; Sharp, Zelton Dave; Van Roekel, Sabrina; Winkleman, Lynn; Strong, Randy (2014). "Rapamycin‐mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction." Aging Cell 13(3): 468-477.; https://hdl.handle.net/2027.42/107367; Aging Cell; Mueller MA, Beutner F, Teupser D, Ceglarek U, Thiery J ( 2008 ) Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR‐/‐ mice despite severe hypercholesterolemia. Atherosclerosis 198, 39 – 48.; Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D ( 2002 ) Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)‐1 and IRS‐2 in liver of Ames dwarf mice. J. Endocrinol. 173, 81 – 94.; Flurkey K, Astle CM, Harrison DE ( 2010 ) Life extension by diet restriction and N‐acetyl‐L‐cysteine in genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1275 – 1284.; Flynn JM, O'Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S ( 2013 ) Late‐life rapamycin treatment reverses age‐related heart dysfunction. Aging Cell 15, 851 – 862.; Fok WC, Zhang Y, Salmon AB, Bhattacharya A, Gunda R, Jones D, Ward W, Fisher K, Richardson A, Perez VI ( 2013 ) Short‐term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice. J. Gerontol. A Biol. Sci. Med. Sci. 68, 108 – 116.; Gems D ( 2007 ) Long‐lived dwarf mice: are bile acids a longevity signal? Aging Cell 6, 421 – 423.; Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA ( 2009 ) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392 – 395.; Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Simpkins JW, Smith D, Wilkinson JE, Miller RA ( 2013 ) Acarbose, 17‐a‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell doi:10.1111/acel.12170 (in press).; Hidalgo M, Rowinsky EK ( 2000 ) The rapamycin‐sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680 – 6686.; Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A ( 2010 ) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338 – 1348.; Kaeberlein M, Kennedy BK ( 2009 ) Ageing: a midlife longevity drug? Nature 460, 331 – 332.; Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK ( 2005 ) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193 – 1196.; Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S ( 2004 ) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885 – 890.; Ladiges W, Van RH, Strong R, Ikeno Y, Treuting P, Rabinovitch P, Richardson A ( 2009 ) Lifespan extension in genetically modified mice. Aging Cell 8, 346 – 352.; Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA ( 2012 ) Rapamycin‐induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638 – 1643.; Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE ( 2013 ) Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell 12, 712 – 718.; Lipman R, Galecki A, Burke DT, Miller RA ( 2004 ) Genetic loci that influence cause of death in a heterogeneous mouse stock. J. Gerontol. Biol. Sci. 59A, 977 – 983.; Livi CB, Hardman RL, Christy BA, Dodds SG, Jones D, Williams C, Strong R, Bokov A, Javors MA, Ikeno Y, Hubbard G, Hasty P, Sharp ZD ( 2013 ) Rapamycin extends life span of Rb1 + /‐ mice by inhibiting neuroendocrine tumors. Aging (Albany NY) 5, 100 – 110.; Melo JA, Ruvkun G ( 2012 ) Inactivation of conserved C. elegans genes engages pathogen‐ and xenobiotic‐associated defenses. Cell 149, 452 – 466.; Miller RA, Chrisp C ( 2002 ) T cell subset patterns that predict resistance to spontaneous lymphoma, mammary adenocarcinoma, and fibrosarcoma in mice. J. Immunol. 169, 1619 – 1625.; Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R ( 2007 ) An aging interventions testing program: Study design and interim report. Aging Cell 6, 565 – 575.; Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R ( 2011 ) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191 – 201.; Nadon N, Strong R, Miller RA, Nelson J, Javors M, Sharp ZD, Peralba JM, Harrison D ( 2008 ). Design of aging intervention studies: the NIA interventions testing program. Age (Dordr) 30, 187 – 199.; Neff F, Flores‐Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, Afonso LC, Aguilar‐Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Holter SM, Moreth K, Prehn C, Puk O, Racz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Hofler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus‐Durner V, Hrabe de Angelis M, Ehninger D ( 2013 ) Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272 – 3291.; Nelson JF, Strong R, Bokov A, Diaz V, Ward W ( 2012 ) Probing the relationship between insulin sensitivity and longevity using genetically modified mice. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1332 – 1338.; Orentreich N, Matias JR, DeFelice A, Zimmerman JA ( 1993 ) Low methionine ingestion by rats extends life span. J. Nutr. 123, 269 – 274.; Pletcher SD ( 1999 ) Model fitting and hypothesis testing for age‐specific mortality data. J. Evol. Biol. 12, 430 – 440.; Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S ( 2006 ) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174 – 184.; Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al‐Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ ( 2009 ) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140 – 144.; Steinbaugh MJ, Sun LY, Bartke A, Miller RA ( 2012 ) Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am. J. Physiol. Endocrinol. Metab. 303, E488 – E495.; Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE ( 2008 ) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7, 641 – 650.; Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, Fernandez E, Guo W, Javors M, Kirkland JL, Nelson JF, Sinclair DA, Teter B, Williams D, Zaveri N, Nadon NL, Harrison DE ( 2013 ) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium‐chain triglyceride oil on life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 68, 6 – 16.; Sun L, Sadighi Akha AA, Miller RA, Harper JM ( 2009 ) Life‐span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A Biol. Sci. Med. Sci. 64, 711 – 722.; Tinsley FC, Taicher GZ, Heiman ML ( 2004 ) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes. Res. 12, 150 – 160.; Vellai T, Takacs‐Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F ( 2003 ) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620.; Wang C, Li Q, Redden DT, Weindruch R, Allison DB ( 2004 ) Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629 – 632.; Waxman DJ, Holloway MG ( 2009 ) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 76, 215 – 228.; Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA ( 2012 ) Rapamycin slows aging in mice. Aging Cell 11, 675 – 682.; Amador‐Noguez D, Zimmerman J, Venable S, Darlington G ( 2005 ) Gender‐specific alterations in gene expression and loss of liver sexual dimorphism in the long‐lived Ames dwarf mice. Biochem. Biophys. Res. Commun. 332, 1086 – 1100.; Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Antoch MP, Blagosklonny MV ( 2010 ) Rapamycin extends maximal lifespan in cancer‐prone mice. Am. J. Pathol. 176, 2092 – 2097.; Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Rosenfeld SV, Blagosklonny MV ( 2011 ) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230 – 4236.; Barlow AD, Nicholson ML, Herbert TP ( 2013 ) Evidence for rapamycin toxicity in pancreatic beta‐cells and a review of the underlying molecular mechanisms. Diabetes 62, 2674 – 2682.; Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L ( 1998 ) Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J. Clin. Invest. 101, 1353 – 1361.; Brown‐Borg HM, Borg KE, Meliska CJ, Bartke A ( 1996 ) Dwarf mice and the ageing process. Nature 384, 33.; Caccamo A, Majumder S, Richardson A, Strong R, Oddo S ( 2010 ) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid‐beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107 – 13120.; Chen C, Liu Y, Liu Y, Zheng P ( 2009 ) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75.

19
Academic Journal

File Description: application/pdf

Relation: Wang, Cong; Dai, Jihuan; Yang, Mengliu; Deng, Guangjiang; Xu, Shengnan; Jia, Yanjun; Boden, Guenther; Ma, Zhongmin A.; Yang, Gangyi; Li, Ling (2014). "Silencing of FGF ‐21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT 3– SOCS 3 signal." FEBS Journal 281(9): 2136-2147.; http://hdl.handle.net/2027.42/106851; FEBS Journal; Uno T, He T, Usui I, Kanatani Y, Bukhari A, Fujisaka S, Yamazaki Y, Suzuki H, Iwata M, Ishiki M, et al. ( 2008 ) Long‐term interleukin‐1α treatment inhibits insulin signaling via IL‐6 production and SOCS3 expression in 3T3‐L1 adipocytes. Horm Metab Res 40, 8 – 12.; To AW, Ribe EM, Chuang TT, Schroeder JE & Lovestone S ( 2011 ) The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone‐treated mice. PLoS ONE 6, e16991.; Li L, Miao Z, Liu R, Yang M, Liu H & Yang G ( 2011 ) Liraglutide prevents hypoadiponectinemia‐induced insulin resistance and alterations of gene expression involved in glucose and lipid metabolism. Mol Med 17, 1168 – 1178.; Kanatani Y, Usui I, Ishizuka K, Bukhari A, Fujisaka S, Urakaze M, Haruta T, Kishimoto T, Naka T & Kobayashi M ( 2007 ) Effects of pioglitazone on suppressor of cytokine signaling 3 expression. Diabetes 56, 795 – 803.; Ramadoss P, Unger‐Smith NE, Lam FS & Hollenberg AN ( 2009 ) STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol 23, 827 – 837.; Ling L, Gangyi Y, Shaochuan S, Mengliu Y, Hua L & Boden G ( 2012 ) The effects of fibroblast growth factor‐21 knockdown and over‐expression on its signaling pathway and glucose‐lipid metabolism in vitro. Mol Cell Endocrinol 348, 21 – 26.; Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, Hashimoto N, Kido Y, Mori T, Sakaue H, et al. ( 2004 ) Role of STAT‐3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 10, 168 – 174.; Howard JK, Flier JS, Howard JK & Flier JS ( 2006 ) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17, 365 – 371.; Moller DE ( 2001 ) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821 – 827.; Breslow JL ( 1996 ) Mouse models of atherosclerosis. Science 272, 685 – 688.; Zhang SH, Reddick RL, Piedrahita JA & Maeda N ( 1992 ) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468 – 471.; Chen Y, Yang G, Li L, Li K & Chen W ( 2009 ) The changes of glucose‐lipid metabolism in ApoE–/– mice with high‐fat induced insulin resistance. Chin J Diabetes 17, 590 – 592.; Utter MF & Keech DB ( 1963 ) Pyruvate carboxylase. I. Nature of the reaction. J Biol Chem 238, 2603 – 2608.; Ballard FJ & Hanson RW ( 1967 ) The citrate cleavage pathway and lipogenesis in rat adipose tissue: replenishment of oxaloacetate. J Lipid Res 8, 73 – 79.; Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, Teshigawara K, Matsuki Y, Watanabe E, Hiramatsu R, et al. ( 2006 ) Role of hepatic STAT3 in brain‐insulin action on hepatic glucose production. Cell Metab 8, 3267 – 3275.; Run‐Zhe S, Feng Z, Fang W, De‐Chun F, Xi‐Hua L, Wei‐Hua R, Xiao‐Lin W, Xue Y, Xiao‐Dong L, Lei H, et al. ( 2009 ) Adiponectin deficiency impairs liver regeneration through attenuating STAT3 phosphorylation in mice. Lab Invest 89, 1043 – 1052.; Ueki K, Kondo T, Tseng YH & Kahn CR ( 2004 ) Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 10, 10422 – 10427.; Torisu T, Sato N, Yoshiga D, Kobayashi T, Yoshioka T, Mori H, Iida M & Yoshimura A ( 2007 ) The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes Cells 12, 143 – 154.; Shi H, Cave B, Inouye K, Bjorbaek C & Flier JS ( 2006 ) Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55, 699 – 707.; Yang M, Zhang L, Wang C, Liu H, Boden G, Yang G & Li L ( 2012 ) Liraglutide increases FGF‐21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance. PLoS ONE 7, e48392.; Sun B, Yang G, Yang M, Liu H, Boden G & Li L ( 2012 ) Long‐term high‐fat diet links the regulation of the insulin‐sensitizing fibroblast growth factor‐21 and visfatin. Cytokine 59, 131 – 137.; Muse ED, Lam TK, Scherer PE & Rossetti L ( 2007 ) Hypothalamic resistin induces hepatic insulin resistance. J Clin Invest 117, 1670 – 1678.; Ling L, Gangyi Y, Shaochuan S, Mengliu Y, Hua L & Boden G ( 2009 ) The adipose triglyceride lipase, adiponectin and visfatin are downregulated by tumor necrosis factor‐α (TNF‐α) in vivo. Cytokine 45, 12 – 19.; Qin S, Ling L, Renzhe L, Mengliu Y, Hua L & Gangyi Y ( 2009 ) Overexpression of visfatin/PBEF/Nampt alters whole‐body insulin sensitivity and lipid profile in rats. Ann Med 41, 311 – 320.; Zhang L, Yang M, Ren H, Hu H, Boden G, Li L & Yang G ( 2013 ) GLP‐1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c‐JNK. Liver Int 33, 794 – 804.; Ramesha CS, Paul R & Ganguly J ( 1980 ) Effect of dietary unsaturated oils on the biosynthesis of cholesterol, and on biliary and fecal excretion of cholesterol and bile acids in rats. J Nutr 110, 2149 – 2158.; Ferre T, Riu E, Bosch F & Valera A ( 1996 ) Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J 10, 1213 – 1218.; Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, Tang Y, Liu H & Boden G ( 2007 ) Circulating FGF‐21 levels in normal subjects and in newly diagnosed patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 115, 1 – 4.; Li L, Yang G, Ning H, Yang M, Liu H & Chen W ( 2008 ) Plasma FGF‐21 levels in type 2 diabetic patients with ketosis. Diabetes Res Clin Pract 82, 209 – 213.; Li K, Li L, Yang M, Zong H, Liu H & Yang G ( 2009 ) Effects of rosiglitazone on fasting plasma fibroblast growth factor‐21 levels in patients with type 2 diabetes mellitus. Eur J Endocrinol 161, 391 – 395.; Muise ES, Azzolina B, Kuo DW, El‐Sherbeini M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP & Wong KK ( 2008 ) Adipose fibroblast growth factor 21 is up‐regulated by peroxisome proliferator‐activated receptor γ and altered metabolic states. Mol Pharmacol 74, 403 – 412.; Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, et al. ( 2008 ) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57, 1246 – 1253.; Fisher MF, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS & Maratos‐ Flier E ( 2010 ) Obesity is a fibroblast growth factor 21 (FGF21)‐resistant state. Diabetes 59, 2781 – 2789.; Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, et al. ( 2005 ) FGF‐21 as a novel metabolic regulator. J Clin Invest 115, 1627 – 1635.; Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE & Kharitonenkov A ( 2008 ) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018 – 6027.; Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, et al. ( 2009 ) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet‐induced obese mice. Diabetes 58, 250 – 259.; Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB & Etgen GJ ( 2007 ) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor‐21. Endocrinology 148, 774 – 781.; Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, Zhang D, Kahn M, Samuel VT, Jurczak MJ, et al. ( 2013 ) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154, 3099 – 3109.; Gable D, Sanderson SC & Humphries SE ( 2007 ) Genotypes, obesity and type 2 diabetes – can genetic information motivate weight loss? A review. Clin Chem Lab Med 45, 301 – 308.; Hansmann G, Wagner RA, Schellong S, Perez VA & Urashima T ( 2007 ) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator‐activated receptor‐γ activation. Circulation 115, 1275 – 1284.

20
Academic Journal

Contributors: * Internal Medicine, University of Michigan Health System, Ann Arbor, MI, † Department of Epidemiology, University of Michigan Health System, Ann Arbor, MI, USA, † Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia

File Description: 131274 bytes; 3109 bytes; application/pdf; text/plain

Relation: Tabaei, B. P.; Engelgau, M. M.; Herman, W. H. (2005). "A multivariate logistic regression equation to screen for dysglycaemia: development and validation." Diabetic Medicine 22(5): 599-605.; https://hdl.handle.net/2027.42/75603; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15842515&dopt=citation; Diabetic Medicine; Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT Diabetes Study. Diabetes Care 1997; 20: 537 – 544.; Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P et al. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343 – 1350.; 3 The Diabetes Prevention Program Research Group. Reduction in the incidence of Type 2 diabetes with lifestyle modification or metformin. N Engl J Med 2002; 346: 393 – 403.; Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marrogquin A, Goico J et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002; 51: 2796 – 2803.; Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, STOP-NIDDM Trial Research Group. Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet 2002; 359: 2072 – 2077.; Engelgau MM, Venkat Narayan KM, Herman WH. Screening for type 2 diabetes. Diabetes Care 2000; 23: 1563 – 1580.; Colagiuri S, Cull CA, Holman RR, The UKPDS Group. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes. UK Prospective Diabetes Study 61 Diabetes Care 2002; 25: 1410 – 1417.; Herman WH, Ali MA, Aubert RE, Engelgau MM, Kenny SJ, Gunter EW et al. Diabetes mellitus in Egypt: risk factors and prevalence. Diabet Med 1995; 12: 1126 – 1131.; Tabaei BP, Herman WH. A multivariate logistic regression equation to screen for diabetes: development and validation. Diabetes Care 2002; 25: 1999 – 2003.; Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996; 12: 1373 – 1379.; Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54: 979 – 985.; 12 SAS Institute Inc. SAS/STAT user's guide, Version 6, 4th edn Vol. 2. Cary, NC: SAS Institute Inc., 1990.; 13 SAS Institute Inc. SAS/STAT Software. Changes and Enhancements Through Release of 6.12. Cary, NC: SAS Institute Inc., 1997.; Hosmer DW, Lemeshow S. Applied Logistic Regression, 2nd edn. New York, NY: Wiley & Sons, 2000.; Steyerberg EW, Harrell FE, Jr, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001; 54: 774 – 781.; Altman DG, Royston P. What do we mean by validating a prognostic model? Statist Med 2000; 19: 453 – 473.; Steyerberg EW, Eijkemans MJC, Harrell FE, Jr, Habbema JDF. Prognostic modeling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statist Med 2000; 19: 1059 – 1079.; Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med 1996; 15: 361 – 387.; Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999; 130: 515 – 524.; Steyerberg EW, Eijkemans MJC, Houwelingen JC, Lee KL, Habbema JD. Prognostic models based on literature and individual patient data in logistic regression analysis. Statist Med 2000; 19: 141 – 160.; 21 American Diabetes Association and National Institute of Diabetes Digestive and Kidney Disease. The prevention or delay of type 2 diabetes. Diabetes Care 2002; 25: 742 – 749.; Herman WH, Engelgau MM. Commentary: screening for type 2 diabetes mellitus in asymptomatic adults. Clin Diabetes 2000; 18: 68.; Rolka DB, Narayan KMV, Thompson TJ, Goldman D, Lindenmayer J, Alich K et al. Performance of recommended screening tests for undiagnosed diabetes and dysglycemia. Diabetes Care 2001; 24: 1899 – 1903.; Ealovega MW, Tabaei BP, Brandle M, Burke R, Herman WH. Opportunistic screening for diabetes in routine clinical practice. Diabetes Care 2004; 27: 9 – 12.; Stern MP, Williams K, Haffner SM. Identification of individuals at high risk of type 2 diabetes: do we need the oral glucose tolerance test? Ann Intern Med 2002; 136: 575 – 581.; Stolk RP, Grobbee DE, Orchard TJ. Why use the oral glucose tolerance test? Diabetes Care 1995; 18: 1045 – 1049.; Drash AL. Is the oral glucose tolerance test obsolete? Diabetes Care 1995; 18: 1072 – 1073.; Katz MH. Multivariable Analysis: a Practical Guide for Clinicians. Cambridge, UK: Cambridge University Press, 1999.; Ruige JB, de Neeling JN, Kostense PJ, Bouter LM, Heine RJ. Performance of an NIDDM screening questionnaire based on symptoms and risk factors. Diabetes Care 1997; 20: 491 – 496.; Burden ML, Burden AC. The American Diabetes Association screening questionnaire for diabetes. Is it worthwhile in the UK? Diabetes Care 1994; 17: 97.; Baan CA, Ruige JB, Stolik RP, Witteman JCM, Dekker JM, Heine RJ, Feskens EJM. Performance of a predictive model to identify undiagnosed diabetes in a health care setting. Diabetes Care 1999; 22: 213 – 219.; Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 2003; 26: 725 – 731.; Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev 2000; 16: 164 – 171.; Park PJ, Griffin SJ, Sargeant L, Wareham NJ. The performance of a risk score in predicting undiagnosed hyperglycemia. Diabetes Care 2002; 25: 984 – 988.; Spijkerman AMW, Yuyun MF, Griffin SJ, Dekker JM, Nijpels G, Wareham NJ. The performance of a risk score as a screening test for undiagnosed hyperglycemia in ethnic minority groups: data from the 1999 health survey of England. Diabetes Care 2004; 27: 116 – 122.; McNeely MJ, Boyko EJ, Leonetti DL, Kahn SE, Fujimoto WY. Comparison of a clinical model, the oral glucose tolerance test, and fasting glucose for prediction of type 2 diabetes risk in Japanese Americans. Diabetes Care 2003; 26: 758 – 763.; Fletcher RH, Fletcher SW, Wagner EH. Clinical Epidemiology: the Essentials, 3rd edn. Baltimore, MD: Williams & Wilkins, 1996.; Hennekens CH, Buring JE. Epidemiology in Medicine. Boston, MA: Little Brown, 1987.; Shaw JE, Zimmet PZ, De Courten M, Dowse GK, Chitson P, Gareeboo H et al. Impaired fasting glucose or impaired glucose tolerance: what best predicts future diabetes in mauritius? Diabetes Care 1999; 22: 399 – 402.; Mooy JM, Gootenhuis PA, deVries H, Kostense PJ, Popp-Snijders C, Bouter LM et al. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured in two oral glucose tolerance tests in general Caucasian population. The Hoorn Study. Diabetologia 1996; 39: 298 – 305.; Eschwege E, Charles MA, Simon D, Thibult N, Balkau B. Reproducibility of the diagnosis of diabetes over a 30-month follow-up. The Paris Prospective Study. Diabetes Care 2001; 24: 1941 – 1944.; Burke JP, Haffner SM, Gaskill SP, Williams KL, Stern MP. Reservation from type 2 diabetes to nondiabetic status: influence of the 1997 American Diabetes Association criteria. Diabetes Care 1998; 21: 1266 – 1270.; de Vegt F, Dekker JM, Stehouwer CD, Nijpels G, Bouter LM, Heine RJ. The 1997 American Diabetes Association criteria versus the 1985 World Health Organization criteria for the diagnosis of abnormal glucose tolerance: poor agreement in the Hoorn Study. Diabetes Care 1998; 21: 1686 – 1690.; Davidson MB, Peters AL, Schriger DL. An alternative approach to the diagnosis of diabetes with a review of the literature. Diabetes Care 1995; 18: 1065 – 1071.; 45 UK Prospective Diabetes Study Group. UK prospective diabetes study XII. differences between Asian, Afro-Caribbean and White Caucasian type 2 diabetic patients at diagnosis of diabetes. Diabet Med 1994; 11: 670 – 677.; de Courten M, Zimmet P. Screening for non-insulin-dependent diabetes mellitus: where to draw the line. Diabet Med 1997; 14: 95 – 98.