Showing 1 - 20 results of 27 for search 'Data mining' Narrow Search
1
Academic Journal

File Description: application/pdf

Relation: Stephens, G. K.; Sitnov, M. I.; Weigel, R. S.; Turner, D. L.; Tsyganenko, N. A.; Rogers, A. J.; Genestreti, K. J.; Slavin, J. A. (2023). "Global Structure of Magnetotail Reconnection Revealed by Mining Space Magnetometer Data." Journal of Geophysical Research: Space Physics 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175895; Journal of Geophysical Research: Space Physics; Stephens, G. K., Sitnov, M. I., Korth, H., Tsyganenko, N. A., Ohtani, S., Gkioulidou, M., & Ukhorskiy, A. Y. ( 2019 ). Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 2 ), 1085 – 1110. https://doi.org/10.1029/2018JA025843; Speiser, T. W. ( 1965 ). Particle trajectories in model current sheets: 1. Analytical solutions. Journal of Geophysical Research, 70 ( 17 ), 4219 – 4226. https://doi.org/10.1029/JZ070i017p04219; Stephens, G. K., Bingham, S. T., Sitnov, M. I., Gkioulidou, M., Merkin, V. G., Korth, H., & Ukhorskiy, A. Y. ( 2020 ). Storm time plasma pressure inferred from multimission measurements and its validation using van Allen probes particle data. Space Weather, 18 ( 12 ), e2020SW002583. https://doi.org/10.1029/2020SW002583; Stephens, G. K., & Sitnov, M. I. ( 2021 ). Concurrent empirical magnetic reconstruction of storm and substorm spatial scales using data mining and virtual spacecraft. Frontiers in Physics, 9, 210. https://doi.org/10.3389/fphy.2021.653111; Stephens, G. K., Sitnov, M. I., Weigel, R., Turner, D., Tsyganenko, N., Rogers, A., et al. ( 2022 ). Global structure of magnetotail reconnection revealed by mining space magnetometer data [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6862829; Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., & Kataoka, R. ( 2021 ). Roles of the M-I coupling and plasma sheet dissipation on the growth-phase thinning and subsequent transition to the onset. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029925. https://doi.org/10.1029/2021JA029925; Torbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., & Saito, Y. ( 2018 ). Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science, 362 ( 6421 ), 1391 – 1395. https://doi.org/10.1126/science.aat2998; Tsyganenko, N. A. ( 1991 ). Methods for quantitative modeling of the magnetic field from Birkeland currents. Planetary and Space Science, 39 ( 4 ), 641 – 654. https://doi.org/10.1016/0032-0633(91)90058-I; Tsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research: Space Physics, 100 ( A4 ), 5599 – 5612. https://doi.org/10.1029/94JA03193; Tsyganenko, N. A. ( 1998 ). Modeling of twisted/warped magnetospheric configurations using the general deformation method. Journal of Geophysical Research: Space Physics, 103 ( A10 ), 23551 – 23563. https://doi.org/10.1029/98JA02292; Tsyganenko, N. A. ( 2002a ). A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP12-1 – SMP12-15. https://doi.org/10.1029/2001JA000219; Tsyganenko, N. A. ( 2002b ). A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP10-1 – SMP10-17. https://doi.org/10.1029/2001JA000220; Tsyganenko, N. A. ( 2013 ). Data-based modeling of the Earth’s dynamic magnetosphere: A review. Annales Geophysicae, 31 ( 10 ), 1745 – 1772. https://doi.org/10.5194/angeo-31-1745-2013; Tsyganenko, N. A. ( 2014 ). Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 335 – 354. https://doi.org/10.1002/2013JA019346; Tsyganenko, N. A., Andreeva, V. A., & Gordeev, E. I. ( 2015 ). Internally and externally induced deformations of the magnetospheric equatorial current as inferred from spacecraft data. Annales Geophysicae, 33 ( 1 ), 1 – 11. https://doi.org/10.5194/angeo-33-1-2015; Tsyganenko, N. A., Andreeva, V., Kubyshkina, M., Sitnov, M. I., & Stephens, G. K. ( 2021 ). Data-based modeling of the Earth’s magnetic field. In Magnetospheres in the solar system (pp. 617 – 635 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119815624.ch39; Tsyganenko, N. A., Andreeva, V. A., Sitnov, M. I., Stephens, G. K., Gjerloev, J. W., Chu, X., & Troshichev, O. A. ( 2021 ). Reconstructing substorms via historical data mining: Is it really feasible? Journal of Geophysical Research: Space Physics, 126 ( 10 ), e2021JA029604. https://doi.org/10.1029/2021JA029604; Tsyganenko, N. A., & Fairfield, D. H. ( 2004 ). Global shape of the magnetotail current sheet as derived from geotail and polar data. Journal of Geophysical Research: Space Physics, 109 ( A3 ). https://doi.org/10.1029/2003JA010062; Tsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research: Space Physics, 110 ( A3 ). https://doi.org/10.1029/2004JA010798; Tsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high-resolution data-based magnetic field model. Journal of Geophysical Research: Space Physics, 112 ( A6 ), https://doi.org/10.1029/2007JA012260; Vassiliadis, D. ( 2006 ). Systems theory for geospace plasma dynamics. Reviews of Geophysics, 44 ( 2 ). https://doi.org/10.1029/2004RG000161; Vassiliadis, D., Klimas, A., & Baker, D. ( 1999 ). Models of D st geomagnetic activity and of its coupling to solar wind parameters. Physics and Chemistry of the Earth–Part C: Solar, Terrestrial & Planetary Science, 24 ( 1 ), 107 – 112. https://doi.org/10.1016/S1464-1917(98)00016-6; Vassiliadis, D., Klimas, A. J., Baker, D. N., & Roberts, D. A. ( 1995 ). A description of the solar wind-magnetosphere coupling based on nonlinear filters. Journal of Geophysical Research: Space Physics, 100 ( A3 ), 3495 – 3512. https://doi.org/10.1029/94JA02725; Verleysen, M., & François, D. ( 2005 ). The curse of dimensionality in data mining and time series prediction. In J. Cabestany, A. Prieto, & F. Sandoval (Eds.), Computational intelligence and bioinspired systems (pp. 758 – 770 ). Springer Berlin Heidelberg.; Wang, C.-P., Lyons, L. R., Nagai, T., & Samson, J. C. ( 2004 ). Midnight radial profiles of the quiet and growth-phase plasma sheet: The geotail observations. Journal of Geophysical Research: Space Physics, 109 ( A12 ). https://doi.org/10.1029/2004JA010590; Wettschereck, D., Aha, D. W., & Mohri, T. ( 1997 ). A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11 ( 1 ), 273 – 314. https://doi.org/10.1023/A:1006593614256; Williams, T., Shulman, S., Ottenstein, N., Palmer, E., Riley, C., Letourneau, S., & Godine, D. ( 2020 ). Operational techniques for dealing with long eclipses during the MMS extended mission. In 2020 IEEE Aerospace Conference (pp. 1 – 12 ). https://doi.org/10.1109/AERO47225.2020.9172276; Xiao, C. J., Wang, X. G., Pu, Z. Y., Zhao, H., Wang, J. X., Ma, Z. W., et al. ( 2006 ). In situ evidence for the structure of the magnetic null in a 3-D reconnection event in the Earth’s magnetotail. Nature Physics, 2 ( 7 ), 478 – 483. https://doi.org/10.1038/nphys342; Yoon, P. H., & Lui, A. T. Y. ( 2005 ). A class of exact two-dimensional kinetic current sheet equilibria. Journal of Geophysical Research: Space Physics, 110 ( A1 ). https://doi.org/10.1029/2003JA010308; Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., & Zhou, B. ( 2021 ). International geomagnetic reference field: The thirteenth generation. Earth, Planets, and Space, 73 ( 1 ), 49. https://doi.org/10.1186/s40623-020-01288-x; Angelopoulos, V., Artemyev, A., Phan, T. D., & Miyashita, Y. ( 2020 ). Near-Earth magnetotail reconnection powers space storms. Nature Physics, 16 ( 3 ), 317 – 321. https://doi.org/10.1038/s41567-019-0749-4; Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., & Kepko, L. ( 2008 ). Tail reconnection triggering substorm onset. Science, 321 ( 5891 ), 931 – 935. https://doi.org/10.1126/science.1160495; Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., & Shinohara, I. ( 2013 ). Electromagnetic energy conversion at reconnection fronts. Science, 341 ( 6153 ), 1478 – 1482. https://doi.org/10.1126/science.1236992; Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12975 – 13010. https://doi.org/10.1029/95JA03753; Birn, J., Hesse, M., & Schindler, K. ( 1996 ). MHD simulations of magnetotail dynamics. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12939 – 12954. https://doi.org/10.1029/96JA00611; Borovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2973 – 2998. https://doi.org/10.1002/2016JA023625; Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199 ( 1–4 ), 5 – 21. https://doi.org/10.1007/s11214-015-0164-9; Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., & Chandler, M. ( 2016 ). Electron-scale measurements of magnetic reconnection in space. Science, 352 ( 6290 ). https://doi.org/10.1126/science.aaf2939; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204; Camporeale, E. ( 2019 ). The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather, 17 ( 8 ), 1166 – 1207. https://doi.org/10.1029/2018SW002061; Chen, L.-J., Wang, S., Hesse, M., Ergun, R. E., Moore, T., Giles, B., & Lindqvist, P.-A. ( 2019 ). Electron diffusion regions in magnetotail reconnection under varying guide fields. Geophysical Research Letters, 46 ( 12 ), 6230 – 6238. https://doi.org/10.1029/2019GL082393; Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., & Navrátil, P. ( 2012 ). Visit: An end-user tool for visualizing and analyzing very large data. In High performance visualization-enabling extreme-scale scientific insight (pp. 357 – 372 ). https://doi.org/10.1201/b12985; Cowley, S. ( 1981 ). Magnetospheric asymmetries associated with the y-component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0; Dungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47; Eastwood, J. P., Phan, T. D., Øieroset, M., & Shay, M. A. ( 2010 ). Average properties of the magnetic reconnection ion diffusion region in the earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. Journal of Geophysical Research: Space Physics, 115 ( A8 ). https://doi.org/10.1029/2009JA014962; Farrugia, C. J., Rogers, A. J., Torbert, R. B., Genestreti, K. J., Nakamura, T. K. M., Lavraud, B., & Dors, I. ( 2021 ). An encounter with the ion and electron diffusion regions at a flapping and twisted tail current sheet. Journal of Geophysical Research: Space Physics, 126 ( 3 ), e2020JA028903. https://doi.org/10.1029/2020JA028903; Fuselier, S. A., Trattner, K. J., & Petrinec, S. M. ( 2011 ). Antiparallel and component reconnection at the dayside magnetopause. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016888; Gjerloev, J. W. ( 2012 ). The SuperMag data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ). https://doi.org/10.1029/2012JA017683; Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99 ( A4 ), 5771 – 5792. https://doi.org/10.1029/93JA02867; Greene, J. M. ( 1988 ). Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. Journal of Geophysical Research: Space Physics, 93 ( A8 ), 8583 – 8590. https://doi.org/10.1029/JA093iA08p08583; Griton, L., Pantellini, F., & Meliani, Z. ( 2018 ). Three-dimensional magnetohydrodynamic simulations of the solar wind interaction with a hyperfast-rotating Uranus. Journal of Geophysical Research: Space Physics, 123 ( 7 ), 5394 – 5406. https://doi.org/10.1029/2018JA025331; Hones, E. W., Jr. ( 1984 ). Plasma sheet behavior during substorms. In Magnetic reconnection in space and laboratory plasmas (pp. 178 – 184 ). American Geophysical Union (AGU). https://doi.org/10.1029/GM030p0178; Ieda, A., Nishimura, Y., Miyashita, Y., Angelopoulos, V., Runov, A., Nagai, T., & Machida, S. ( 2016 ). Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophysical Research: Space Physics, 121 ( 5 ), 4548 – 4568. https://doi.org/10.1002/2015JA022244; Imber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near-earth reconnection site during solar minimum. Journal of Geophysical Research: Space Physics, 116 ( A2 ). https://doi.org/10.1029/2010JA016026; Jackson, D. D. ( 1972 ). Interpretation of inaccurate, insufficient and inconsistent data. Geophysical Journal International, 28 ( 2 ), 97 – 109. https://doi.org/10.1111/j.1365-246X.1972.tb06115.x; Ji, H., Daughton, W., Jara-Almonte, J., Le, A., Stanier, A., & Yoo, J. ( 2022 ). Magnetic reconnection in the era of exascale computing and multiscale experiments. Nature Reviews Physics, 4, 263 – 282. https://doi.org/10.1038/s42254-021-00419-x; Juusola, L., Østgaard, N., Tanskanen, E., Partamies, N., & Snekvik, K. ( 2011 ). Earthward plasma sheet flows during substorm phases. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016852; Korth, H., Sitnov, M. I., & Stephens, G. K. ( 2018 ). Magnetic field modeling database description final [Dataset]. NASA Space Physics Data Facility. Retrieved from https://spdf.gsfc.nasa.gov/pub/data/aaa_special-purpose-datasets/empirical-magnetic-field-modeling-database-with-TS07D-coefficients/; Liemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16 ( 12 ), 2079 – 2102. https://doi.org/10.1029/2018SW002067; Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., et al. ( 2016 ). Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. The Astrophysical Journal, 818 ( 2 ), 148. https://doi.org/10.3847/0004-637x/818/2/148; McPherron, R. L., Russell, C. T., & Aubry, M. P. ( 1973 ). Satellite studies of magnetospheric substorms on 15 August 1968: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78 ( 16 ), 3131 – 3149.; Mead, G. D., & Beard, D. B. ( 1964 ). Shape of the geomagnetic field solar wind boundary. Journal of Geophysical Research, 69 ( 7 ), 1169 – 1179. https://doi.org/10.1029/JZ069i007p01169; Nagai, T., Fujimoto, M., Nakamura, R., Baumjohann, W., Ieda, A., Shinohara, I., & Mukai, T. ( 2005 ). Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. Journal of Geophysical Research: Space Physics, 110 ( A9 ). https://doi.org/10.1029/2005JA011207; Nagai, T., & Shinohara, I. ( 2022 ). Solar wind energy input: The primary control factor of magnetotail reconnection site. Journal of Geophysical Research: Space Physics, 127 ( 8 ). e2022JA030653. https://doi.org/10.1029/2022JA030653; Nelder, J. A., & Mead, R. ( 1965 ). A simplex method for function minimization. The Computer Journal, 7 ( 4 ), 308 – 313. https://doi.org/10.1093/comjnl/7.4.308; Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMag auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016779; Newell, P. T., & Gjerloev, J. W. ( 2012 ). SuperMag-based partial ring current indices. Journal of Geophysical Research: Space Physics, 117 ( A5 ). https://doi.org/10.1029/2012JA017586; Nishida, A., Scholer, M., Terasawa, T., Bame, S. J., Gloeckler, G., Smith, E. J., & Zwickl, R. D. ( 1986 ). Quasi-stagnant plasmoid in the middle tail: A new pre-expansion phase phenomenon. Journal of Geophysical Research: Space Physics, 91 ( A4 ), 4245 – 4255. https://doi.org/10.1029/JA091iA04p04245; Partamies, N., Juusola, L., Tanskanen, E., & Kauristie, K. ( 2013 ). Statistical properties of substorms during different storm and solar cycle phases. Annales Geophysicae, 31 ( 2 ), 349 – 358. https://doi.org/10.5194/angeo-31-349-2013; Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., & Magnes, W. ( 2018 ). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature, 557 ( 7704 ), 202 – 206. https://doi.org/10.1038/s41586-018-0091-5; Press, W. H., Teukolsky, S. A., Flannery, B. P., & Vetterling, W. T. ( 1992 ). Numerical recipes in FORTRAN: The art of scientific computing ( 2nd ed. ). Cambridge University Press.; Reyes, P. I., Pinto, V. A., & Moya, P. S. ( 2021 ). Geomagnetic storm occurrence and their relation with solar cycle phases. Space Weather, 19 ( 9 ), e2021SW002766. https://doi.org/10.1029/2021SW002766; Rogers, A. J., Farrugia, C. J., & Torbert, R. B. ( 2019 ). Numerical algorithm for detecting ion diffusion regions in the geomagnetic tail with applications to MMS tail season 1 May to 30 September 2017. Journal of Geophysical Research: Space Physics, 124 ( 8 ), 6487 – 6503. https://doi.org/10.1029/2018JA026429; Rogers, A. J., Farrugia, C. J., Torbert, R. B., & Rogers, T. J. ( 2023 ). Applying magnetic curvature to MMS data to identify thin current sheets relative to tail reconnection. Journal of Geophysical Research: Space Physics, 128, e2022JA030577. https://doi.org/10.1029/2022JA030577; Runov, A., Sergeev, V. A., Baumjohann, W., Nakamura, R., Apatenkov, S., Asano, Y., & Rème, H. ( 2005 ). Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 23 ( 4 ), 1391 – 1403. https://doi.org/10.5194/angeo-23-1391-2005; Russell, C. T., & McPherron, R. L. ( 1973 ). The magnetotail and substorms. Space Science Reviews, 15 ( 2 ), 205 – 266. https://doi.org/10.1007/BF00169321; Sergeev, V. A., Angelopoulos, V., Kubyshkina, M., Donovan, E., Zhou, X.-Z., Runov, A., & Nakamura, R. ( 2011 ). Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage. Journal of Geophysical Research: Space Physics, 116 ( A5 ). https://doi.org/10.1029/2010JA015689; Sergeev, V. A., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura, R., Runov, A. V., & Nagai, T. ( 2006 ). Survey of large-amplitude flapping motions in the midtail current sheet. Annales Geophysicae, 24 ( 7 ), 2015 – 2024. https://doi.org/10.5194/angeo-24-2015-2006; Shiota, D., Isobe, H., Chen, P. F., Yamamoto, T. T., Sakajiri, T., & Shibata, K. ( 2005 ). Self-consistent magnetohydrodynamic modeling of a coronal mass ejection, coronal dimming, and a giant cusp-shaped arcade formation. The Astrophysical Journal, 634 ( 1 ), 663 – 678. https://doi.org/10.1086/496943; Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 103 ( A8 ), 17691 – 17700. https://doi.org/10.1029/98JA01103; Shukhtina, M. A., Dmitrieva, N. P., & Sergeev, V. A. ( 2014 ). On the conditions preceding sudden magnetotail magnetic flux unloading. Geophysical Research Letters, 41 ( 4 ), 1093 – 1099. https://doi.org/10.1002/2014GL059290; Sibeck, D. G., Lopez, R. E., & Roelof, E. C. ( 1991 ). Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research: Space Physics, 96 ( A4 ), 5489 – 5495. https://doi.org/10.1029/90JA02464; Sitnov, M. I., Birn, J., Ferdousi, B., Gordeev, E., Khotyaintsev, Y., Merkin, V., & Zhou, X. ( 2019 ). Explosive magnetotail activity. Space Science Reviews, 215 ( 4 ), 31. https://doi.org/10.1007/s11214-019-0599-5; Sitnov, M. I., Buzulukova, N., Swisdak, M., Merkin, V. G., & Moore, T. E. ( 2013 ). Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophysical Research Letters, 40 ( 1 ), 22 – 27. https://doi.org/10.1029/2012GL054701; Sitnov, M. I., & Merkin, V. G. ( 2016 ). Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation. Journal of Geophysical Research: Space Physics, 121 ( 8 ), 7664 – 7683. https://doi.org/10.1002/2016JA023001; Sitnov, M. I., & Schindler, K. ( 2010 ). Tearing stability of a multiscale magnetotail current sheet. Geophysical Research Letters, 37 ( 8 ). https://doi.org/10.1029/2010GL042961; Sitnov, M. I., Sharma, A. S., Papadopoulos, K., & Vassiliadis, D. ( 2001 ). Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions. Physical Review E—Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 65, 016116. https://doi.org/10.1103/PhysRevE.65.016116; Sitnov, M. I., Stephens, G. K., Motoba, T., & Swisdak, M. ( 2021 ). Data mining reconstruction of magnetotail reconnection and implications for its first-principle modeling. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.644884; Sitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Miyashita, Y., Merkin, V. G., Motoba, T., & Genestreti, K. J. ( 2019b ). Signatures of nonideal plasma evolution during substorms obtained by mining multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8427 – 8456. https://doi.org/10.1029/2019JA027037; Sitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Ukhorskiy, A. Y., Wing, S., Korth, H., & Anderson, B. J. ( 2017 ). Spatial structure and asymmetries of magnetospheric currents inferred from high-resolution empirical geomagnetic field models. In Dawn-dusk asymmetries in planetary plasma environments (pp. 199 – 212 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119216346.ch15; Sitnov, M. I., & Swisdak, M. ( 2011 ). Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016920; Sitnov, M. I., Swisdak, M., Guzdar, P. N., & Runov, A. ( 2006 ). Structure and dynamics of a new class of thin current sheets. Journal of Geophysical Research: Space Physics, 111 ( A8 ). https://doi.org/10.1029/2005JA011517; Sitnov, M. I., Tsyganenko, N. A., Ukhorskiy, A. Y., & Brandt, P. C. ( 2008 ). Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. Journal of Geophysical Research: Space Physics, 113 ( A7 ). https://doi.org/10.1029/2007JA013003; Sitnov, M. I., Ukhorskiy, A. Y., & Stephens, G. K. ( 2012 ). Forecasting of global data-binning parameters for high-resolution empirical geomagnetic field models. Space Weather, 10 ( 9 ). https://doi.org/10.1029/2012SW000783

Availability: https://doi.org/10.1029/2022JA03106610.1029/JZ070i017p0421910.5281/zenodo.686282910.1016/0032-0633(91)90058-I10.1029/94JA0319310.1029/98JA0229210.1029/2001JA00021910.1029/2001JA00022010.5194/angeo-31-1745-201310.1002/2013JA01934610.1029/2004RG00016110.1038/nphys34210.1029/2018SW00206110.1016/0032-0633(81)90141-010.1103/PhysRevLett.6.4710.1029/2012JA01768310.1029/JA093iA08p0858310.1029/GM030p017810.1111/j.1365-246X.1972.tb06115.x10.3847/0004-637x/818/2/148
https://hdl.handle.net/2027.42/175895

2
Academic Journal
3
Academic Journal

File Description: application/pdf

Relation: Azari, Abigail R.; Liemohn, Michael W.; Jia, Xianzhe; Thomsen, Michelle F.; Mitchell, Donald G.; Sergis, Nick; Rymer, Abigail M.; Hospodarsky, George B.; Paranicas, Christopher; Vandegriff, Jon (2018). "Interchange Injections at Saturn: Statistical Survey of Energetic H+ Sudden Flux Intensifications." Journal of Geophysical Research: Space Physics 123(6): 4692-4711.; https://hdl.handle.net/2027.42/145315; Journal of Geophysical Research: Space Physics; Paranicas, C., Thomsen, M. F., Achilleos, N., Andriopoulou, M., Badman, S. V., Hospodarsky, G., et al. ( 2016 ). Effects of radial motion on interchange injections at Saturn. Icarus, 264, 342 – 351.; Krimigis, S. M., Sergis, N., Mitchell, D. G., Hamilton, D. C., & Krupp, N. ( 2007 ). A dynamic, rotating ring current around Saturn. Nature, 450 ( 7172 ), 1050 – 1053. Retrieved from doi: https://doi.org/10.1038/nature06425; Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. ( 2009 ). Circos: An information aesthetic for comparative genomics. Genome Research, 19 ( 9 ), 1639 – 1645. https://doi.org/10.1101/gr.092759.109; Lai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., & Dougherty, M. K. ( 2016 ). Transport of magnetic flux and mass in Saturn’s inner magnetosphere. Journal of Geophysical Research: Space Physics, 121, 3050 – 3057. https://doi.org/10.1002/2016JA022436; Liu, X., Hill, T. W., Wolf, R. A., Sazykin, S., Spiro, R. W., & Wu, H. ( 2010 ). Numerical simulation of plasma transport in Saturn’s inner magnetosphere using the Rice Convection Model. Journal of Geophysical Research, 115, A12254. https://doi.org/10.1029/2010JA015859; Mason, I. ( 1982 ). A model for assessment of weather forecasts. Australian Meteorological Magazine, 30 ( 4 ), 291 – 303.; Mauk, B. H., Hamilton, D. C., Hill, T. W., Hospodarsky, G. B., Johnson, R. E., Paranicas, C., et al. ( 2009 ). Fundamental plasma processes in Saturn’s magnetosphere. In M. K. Dougherty, et al. (Eds.), Saturn from Cassini‐Huygens (pp. 281 – 331 ). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978‐1‐4020‐9217‐6_11; Mauk, B. H., Saur, J., Mitchell, D. G., Roelof, E. C., Brandt, P. C., Armstrong, T., et al. ( 2005 ). Energetic particle injections in Saturn’s magnetosphere. Geophysical Research Letters, 32, L14S05. https://doi.org/10.1029/2005GL022485; Michel, F. C., & Sturrock, P. A. ( 1974 ). Centrifugal instability of the jovian magnetosphere and its interaction with the solar wind. Planetary and Space Science, 22 ( 11 ), 1501 – 1510. https://doi.org/10.1016/0032‐0633(74)90015‐4; Mitchell, D. G., Brandt, P. C., Carbary, J. F., Kurth, W. S., Krimigis, S. M., Paranicas, C., et al. ( 2015 ). Injection, interchange, and reconnection. Magnetotails in the Solar System, 2004, 327 – 343. https://doi.org/10.1002/9781118842324.ch19; Mitchell, D. G., Carbary, J. F., Cowley, S. W. H., Hill, T. W., & Zarka, P. ( 2009 ). The dynamics of Saturn’s magnetosphere. In M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Eds.), Saturn from Cassini‐Huygens (pp. 257 – 279 ). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978‐1‐4020‐9217‐6_10; Muller, A. L., Saur, J., Krupp, N., Roussos, E., Mauk, B. H., Rymer, A. M., et al. ( 2010 ). Azimuthal plasma flow in the Kronian magnetosphere. Journal of Geophysical Research, 115, A08203. https://doi.org/10.1029/2009JA015122; Navidi, W. C. ( 2015 ). Statistics for engineers and scientists. Statistics for Engineers & Scientists. New York, NY: McGraw‐Hill Education. Retrieved from https://mirlyn.lib.umich.edu/Record/014865504 CN‐QA 276.4.N38; Paranicas, C., Mitchell, D. G., Roelof, E. C., Mauk, B. H., Krimigis, S. M., Brandt, P. C., et al. ( 2007 ). Energetic electrons injected into Saturn’s neutral gas cloud. Geophysical Research Letters, 34, L02109. https://doi.org/10.1029/2006GL028676; Provan, G., Cowley, S. W. H., Lamy, L., Bunce, E. J., Hunt, G. J., Zarka, P., et al. ( 2016 ). Planetary period oscillations in Saturn’s magnetosphere: Coalescence and reversal of northern and southern periods in late northern spring. Journal of Geophysical Research: Space Physics, 121, 9829 – 9862. https://doi.org/10.1002/2016JA023056; Pulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056; Rymer, A. M., Mauk, B. H., Hill, T. W., André, N., Mitchell, D. G., Paranicas, C., et al. ( 2009 ). Cassini evidence for rapid interchange transport at Saturn. Planetary and Space Science, 57 ( 14–15 ), 1779 – 1784. https://doi.org/10.1016/j.pss.2009.04.010; Schippers, P., Blanc, M., André, N., Dandouras, I., Lewis, G. R., Gilbert, L. K., et al. ( 2008 ). Multi‐instrument analysis of electron populations in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 113, A07208. https://doi.org/10.1029/2008JA013098; Sergis, N., Arridge, C. S., Krimigis, S. M., Mitchell, D. G., Rymer, A. M., Hamilton, D. C., et al. ( 2011 ). Dynamics and seasonal variations in Saturn’s magnetospheric plasma sheet, as measured by Cassini. Journal of Geophysical Research, 116, A04203. https://doi.org/10.1029/2010JA016180; Sergis, N., Jackman, C. M., Thomsen, M. F., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., et al. ( 2017 ). Radial and local time structure of the Saturnian ring current, revealed by Cassini. Journal of Geophysical Research: Space Physics, 122, 1803 – 1815. https://doi.org/10.1002/2016JA023742; Sergis, N., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., Mauk, B. M., et al. ( 2007 ). Ring current at Saturn: Energetic particle pressure in Saturn’s equatorial magnetosphere measured with Cassini/MIMI. Geophysical Research Letters, 34, L09102. https://doi.org/10.1029/2006GL029223; Southwood, D. J., & Kivelson, M. G. ( 1987 ). Magnetospheric interchange instability. Journal of Geophysical Research, 92, 109 – 116. https://doi.org/10.1029/JA092iA01p00109; Stephenson, D. B. ( 2000 ). Use of the “odds ratio” for diagnosing forecast skill. Weather and Forecasting, 15 ( 2 ), 221 – 232. https://doi.org/10.1175/1520‐0434(2000)015%3C0221:UOTORF%3E2.0.CO;2; Thomsen, M. F. ( 2013 ). Saturn’s magnetospheric dynamics. Geophysical Research Letters, 40, 5337 – 5344. https://doi.org/10.1002/2013GL057967; Thomsen, M. F., Coates, A. J., Roussos, E., Wilson, R. J., Hansen, K. C., & Lewis, G. R. ( 2016 ). Suprathermal electron penetration into the inner magnetosphere of Saturn. Journal of Geophysical Research, A: Space Physics, 121, 5436 – 5448. https://doi.org/10.1002/2016JA022692; Thomsen, M. F., Mitchell, D. G., Jia, X., Jackman, C. M., Hospodarsky, G., & Coates, A. J. ( 2015 ). Plasmapause formation at Saturn. Journal of Geophysical Research, A: Space Physics, 120, 2571 – 2583. https://doi.org/10.1002/2015JA021008; Thomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., Young, D. T., Crary, F. J., et al. ( 2010 ). Survey of ion plasma parameters in Saturn’s magnetosphere. Journal of Geophysical Research, 115, A10220. https://doi.org/10.1029/2010JA015267; Thomsen, M. F., Reisenfeld, D. B., Wilson, R. J., Andriopoulou, M., Crary, F. J., Hospodarsky, G. B., et al. ( 2014 ). Ion composition in interchange injection events in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 119, 9761 – 9772. https://doi.org/10.1002/2014JA020489.Received; Vandegriff, J., Difabio, R., Hamilton, D., Kusterer, M., Manweiler, J., Mitchell, D., et al. ( 2013 ). Cassini/MIMI instrument data user guide.; Vasyliūnas, V. M. ( 1983 ). Plasma Distribution and Flow. doi: https://doi.org/10.1029/2003JD004173.Aires; Fawcett, T. ( 2006 ). An introduction to ROC analysis. Pattern Recognition Letters, 27 ( 8 ), 861 – 874. https://doi.org/10.1016/j.patrec.2005.10.010; Achilleos, N., André, N., Blanco‐Cano, X., Brandt, P. C., Delamere, P. A., & Winglee, R. ( 2015 ). 1. Transport of mass, momentum and energy in planetary magnetodisc regions. Space Science Reviews, 187 ( 1–4 ), 229 – 299. https://doi.org/10.1007/s11214‐014‐0086‐y; André, N., Dougherty, M. K., Russell, C. T., Leisner, J. S., & Khurana, K. K. ( 2005 ). Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small‐scale plasma transport in the magnetosphere. Geophysical Research Letters, 32, L14S06. https://doi.org/10.1029/2005GL022643; André, N., Persoon, A. M., Goldstein, J., Burch, J. L., Louarn, P., Lewis, G. R., et al. ( 2007 ). Magnetic signatures of plasma‐depleted flux tubes in the Saturnian inner magnetosphere. Geophysical Research Letters, 34, L14108. https://doi.org/10.1029/2007GL030374; Arridge, C. S., André, N., Khurana, K. K., Russell, C. T., Cowley, S. W. H., Provan, G., et al. ( 2011 ). Periodic motion of Saturn’s nightside plasma sheet. Journal of Geophysical Research, 116, A11205. https://doi.org/10.1029/2011JA016827; Arridge, C. S., Khurana, K. K., Russell, C. T., Southwood, D. J., Achilleos, N., Dougherty, M. K., et al. ( 2008 ). Warping of Saturn’s magnetospheric and magnetotail current sheets. Journal of Geophysical Research, 113, A08217. https://doi.org/10.1029/2007JA012963; Burch, J. L., Goldstein, J., Hill, T. W., Young, D. T., Crary, F. J., Coates, A. J., et al. ( 2005 ). Properties of local plasma injections in Saturn’s magnetosphere. Geophysical Research Letters, 32, L14S02. https://doi.org/10.1029/2005GL022611; Carbary, J. F., & Mitchell, D. G. ( 2013 ). Periodicities in Saturn’s magnetosphere. Reviews of Geophysics, 51, 1 – 30. https://doi.org/10.1002/rog.20006.1; Carbary, J. F., Mitchell, D. G., Paranicas, C., Roelof, E. C., & Krimigis, S. M. ( 2008 ). Direct observation of warping in the plasma sheet of Saturn. Geophysical Research Letters, 35, L24201. https://doi.org/10.1029/2008GL035970; Carbary, J. F., Sergis, N., Mitchell, D. G., & Krupp, N. ( 2015 ). Saturn’s hinge parameter from Cassini magnetotail passes in 2013–2014. Journal of Geophysical Research: Space Physics, 120, 4438 – 4445. https://doi.org/10.1002/2015JA021152; Chen, Y., & Hill, T. W. ( 2008 ). Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. Journal of Geophysical Research, 113, A07215. https://doi.org/10.1029/2008JA013166; Chen, Y., Hill, T. W., Rymer, A. M., & Wilson, R. J. ( 2010 ). Rate of radial transport of plasma in Saturn’s inner magnetosphere. Journal of Geophysical Research, 115, A10211. https://doi.org/10.1029/2010JA015412; Dejong, A. D., Burch, J. L., Goldstein, J., Coates, A. J., & Young, D. T. ( 2010 ). Low‐energy electrons in Saturn’s inner magnetosphere and their role in interchange injections. Journal of Geophysical Research, 115, A10229. https://doi.org/10.1029/2010JA015510; Ganushkina, N. Y., Amariutei, O. A., Welling, D., & Heynderickz, D. ( 2015 ). Nowcast model for low‐energy electrons in the inner magnetosphere. Space Weather, 13, 16 – 34. https://doi.org/10.1002/2014SW001098; Gurnett, D. A., Groene, J. B., Averkamp, T. F., Kurth, W. S., Ye, S.‐Y., & Fischer, G. ( 2011 ). An SLS4 longitude system based on a tracking filter analysis of the rotational modulation of Saturn kilometric radiation. Planetary Radio Emissions, VII, 51 – 64. https://doi.org/10.1553/PRE7s51; Heidke, P. ( 1926 ). Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungdienst (Calculation of the success and goodness of strong wind forecasts in the storm warning service). Geografiska Annaler Stockholm, 8, 301 – 349.; Hill, T. W. ( 1976 ). Interchange stability of a rapidly rotating magnetosphere. Planetary and Space Science, 24 ( 12 ), 1151 – 1154. https://doi.org/10.1016/0032‐0633(76)90152‐5; Hill, T. W. ( 2016 ). Penetraing of external plasma into a rotation‐driven magnetosphere. Journal of Geophysical Research: Space Physics, 121, 10,032 – 10,036. https://doi.org/10.1002/2016JA023430; Hill, T. W., Rymer, A. M., Burch, J. L., Crary, F. J., Young, D. T., Thomsen, M. F., et al. ( 2005 ). Evidence for rotationally driven plasma transport in Saturn’s magnetosphere. Geophysical Research Letters, 32, L14S10. https://doi.org/10.1029/2005GL022620; Kennelly, T. J., Leisner, J. S., Hospodarsky, G. B., & Gurnett, D. A. ( 2013 ). Ordering of injection events within Saturnian SLS longitude and local time. Journal of Geophysical Research: Space Physics, 118, 832 – 838. https://doi.org/10.1002/jgra.50152; Krimigis, S. M., Carbary, J. F., Keath, E. P., Bostrom, C. O., Axford, W. I., Gloeckler, G., et al. ( 1981 ). Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft. Journal of Geophysical Research, 86, 8227 – 8257.; Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., et al. ( 2004 ). Magnetosphere Imaging Instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Science Reviews, 114 ( 1–4 ), 233 – 329. https://doi.org/10.1007/s11214‐004‐1410‐8

4
Academic Journal

File Description: application/pdf

Relation: Goldsmith, Bryan R.; Esterhuizen, Jacques; Liu, Jin‐xun; Bartel, Christopher J.; Sutton, Christopher (2018). "Machine learning for heterogeneous catalyst design and discovery." AIChE Journal 64(7): 2311-2323.; http://hdl.handle.net/2027.42/144583; AIChE Journal; Natarajan SK, Behler J. Neural network molecular dynamics simulations of solidâ liquid interfaces: water at lowâ index copper surfaces. Phys Chem Chem Phys. 2016; 18 ( 41 ): 28704.; Yao K, Herr JE, Toth DW, Mckintyre R, Parkhill J. The TensorMolâ 0.1 model chemistry: a neural network augmented with longâ range physics. Chem Sci. 2018; 9 ( 8 ): 2261.; Campbell CT. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 2017; 7 ( 4 ): 2770.; Hratchian HP, Schlegel HB. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Dykstra C, Frenking G, Kim K, Scuseria G (editors.), Theory and Applications of Computational Chemistry: The first forty years. Amsterdam: Elsevier, 2005: 195.; Heyden A, Bell AT, Keil FJ. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys. 2005; 123 ( 22 ): 224101.; Schlegel HB. Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J Comput Chem. 2003; 24 ( 12 ): 1514.; Zimmerman PM. Singleâ ended transition state finding with the growing string method. J Comput Chem. 2015; 36 ( 9 ): 601.; Jafari M, Zimmerman PM. Reliable and efficient reaction path and transition state finding for surface reactions with the growing string method. J Comput Chem. 2017; 38 ( 10 ): 645.; Sun K, Zhao Y, Su Hâ Y, Li Wâ X. Force reversed method for locating transition states. Theor Chem Acc. 2012; 131 ( 2 ): 1118.; Peters B. Reaction Rate Theory and Rare Events, 1 ed. Amsterdam, Netherlands: Elsevier Science, 2017.; Peterson AA. Acceleration of saddleâ point searches with machine learning. J Chem Phys. 2016; 145 ( 7 ): 074106.; Koistinen Oâ P, Dagbjartsdóttir FB, à sgeirsson V, Vehtari A, Jónsson H. Nudged elastic band calculations accelerated with Gaussian process regression. J Chem Phys. 2017; 147 ( 15 ): 152720.; Martínezâ Núñez E. An automated method to find transition states using chemical dynamics simulations. J Comput Chem. 2015; 36 ( 4 ): 222.; Zimmerman PM. Navigating molecular space for reaction mechanisms: an efficient, automated procedure. Mol Simul. 2015; 41 ( 1â 3 ): 43.; Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun. 2017; 8: 14621.; Gu GH, Plechac P, Vlachos DG. Thermochemistry of gasâ phase and surface species via LASSOâ assisted subgraph selection. React Chem Eng. 2018.; Krallinger M, Rabal O, Lourenço A, Oyarzabal J, Valencia A. Information retrieval and text mining technologies for chemistry. Chem Rev. 2017; 117 ( 12 ): 7673.; Kim E, Huang K, Tomala A, Matthews S, Strubell E, Saunders A, McCallum A, Olivetti E. Machineâ learned and codified synthesis parameters of oxide materials. Sci Data. 2017; 4: 170127.; Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem Mater. 2017; 29 ( 21 ): 9436.; Swain MC, Cole JM. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature. J Chem Inf Model. 2016; 56 ( 10 ): 1894.; Report of the basic research needs workshop for catalysis science. Basic Research Needs for Catalysis Science to Transform Energy Technologies; US DOE Office of Science (United States), 2018: 57.; Timoshenko J, Keller KR, Frenkel AI. Determination of bimetallic architectures in nanometerâ scale catalysts by combining molecular dynamics simulations with xâ ray absorption spectroscopy. J Chem Phys. 2017; 146 ( 11 ): 114201.; Kalinin SV, Sumpter BG, Archibald RK. Bigâ deepâ smart data in imaging for guiding materials design. Nat Mater. 2015; 14 ( 10 ): 973.; Timoshenko J, Lu D, Lin Y, Frenkel AI. Supervised machineâ learningâ based determination of threeâ dimensional structure of metallic nanoparticles. J Phys Chem Lett. 2017; 8 ( 20 ): 5091.; Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. Mastering the game of go without human knowledge. Nature. 2017; 550 ( 7676 ): 354.; Ramprasad R, Batra R, Pilania G, Mannodiâ Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. Npj Comput Mater. 2017; 3 ( 1 ): 54.; Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H, Amadorâ Bedolla C, Brabec CJ, Maruyama B, Persson KA, Aspuruâ Guzik A. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater. 3;5: 2018.; Beck DA, Carothers JM, Subramanian VR, Pfaendtner J. Data science: accelerating innovation and discovery in chemical engineering. AIChE J. 2016; 62 ( 5 ): 1402.; Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning, Vol. 1. Springer series in statistics, New York, 2001.; Kitchin JR. Machine learning in catalysis. Nat Catal. 2018; 1 ( 4 ): 230.; Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikitâ learn: machine learning in python. J Mach Learn Res. 2011; 12: 2825.; Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: A System for Largeâ Scale Machine Learning, OSDI, 2016: 265.; Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R, DuÅ ak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Bjerre Jensen P, Kermode J, Kitchin JR, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW. The Atomic Simulation Environmentâ A Python library for working with atoms. J Phys Condens Matter. 2017; 29 ( 27 ): 273002.; Mathew K, Montoya JH, Faghaninia A, Dwarakanath S, Aykol M, Tang H, Chu Iâ h, Smidt T, Bocklund B, Horton M, Dagdelen J, Wood B, Liu Zâ K, Neaton J, Ong SP, Persson K, Jain A. Atomate: a highâ level interface to generate, execute, and analyze computational materials science workflows. Comput Mater Sci. 2017; 139: 140.; Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüders M, Oliveira M, Scheffler M. Towards efficient data exchange and sharing for bigâ data driven materials science: metadata and data formats. Npj Comput Mater. 2017; 3 ( 1 ): 46.; O’Mara J, Meredig B, Michel K. Materials data infrastructure: a case study of the citrination platform to examine data import, storage, and access. JOM. 2016; 68 ( 8 ): 2031.; Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013; 1 ( 1 ): 011002.; Hummelshøj JS, Abildâ Pedersen F, Studt F, Bligaard T, Nørskov JK. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chem Int Ed. 2012; 124 ( 1 ): 278.; van Santen RA. Modern Heterogeneous Catalysis: An Introduction. Weinheim, Germany: John Wiley & Sons, 2017: 592.; Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt JD. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem. 2017; 9 ( 1 ): 17.; Goldsmith BR, Peters B, Johnson JK, Gates BC, Scott SL. Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 2017; 7 ( 11 ): 7543.; Gross EK, Dreizler RM. Density Functional Theory, Vol. 337. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2013.; Carter EA. Challenges in modeling materials properties without experimental input. Science. 2008; 321 ( 5890 ): 800.; Ras Eâ J, Rothenberg G. Heterogeneous catalyst discovery using 21st century tools: a tutorial. RSC Adv. 2014; 4 ( 12 ): 5963.; Hattori T, Kito S. Neural network as a tool for catalyst development. Catal Today. 1995; 23 ( 4 ): 347.; Sasaki M, Hamada H, Kintaichi Y, Ito T. Application of a neural network to the analysis of catalytic reactions analysis of NO decomposition over Cu/ZSMâ 5 zeolite. Appl Catal A. 1995; 132 ( 2 ): 261.; Mueller T, Kusne AG, Ramprasad R. Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem. 2016; 29: 186.; Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal Today. 2008; 137 ( 1 ): 2.; Fernandez M, Barron H, Barnard AS. Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Adv. 2017; 7 ( 77 ): 48962.; Maldonado AG, Rothenberg G. Predictive modeling in homogeneous catalysis: a tutorial. Chem Soc Rev. 2010; 39 ( 6 ): 1891.; Janet JP, Kulik HJ. Resolving transition metal chemical space: feature selection for machine learning and structureâ property relationships. J Phys Chem A. 2017; 121 ( 46 ): 8939.; Janet JP, Chan L, Kulik HJ. Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network. J Phys Chem Lett. 2018; 9 ( 5 ): 1064.; Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B. 2013; 87 ( 21 ): 184115.; Bartók AP, Kondor R, Csányi G. Erratum: on representing chemical environments [Phys. Rev. B 87, 184115 (2013)]. Phys Rev B. 2017; 96 ( 1 ): 019902.; Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressedâ sensing method for systematically identifying efficient physical models of materials properties. arXiv preprint arXiv:1710.03319, 2017.; Senkan SM. Highâ throughput screening of solidâ state catalyst libraries. Nature. 1998; 394 ( 6691 ): 350.; Baumes L, Farrusseng D, Lengliz M, Mirodatos C. Using artificial neural networks to boost highâ throughput discovery in heterogeneous catalysis. Mol Inform. 2004; 23 ( 9 ): 767.; Baumes L, Serra J, Serna P, Corma A. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. J Comb Chem. 2006; 8 ( 4 ): 583.; Cleve TV, Moniri S, Belok G, More KL, Linic S. Nanoscale engineering of efficient oxygen reduction electrocatalysts by tailoring the local chemical environment of Pt surface Sites. ACS Catal. 2017; 7 ( 1 ): 17.; Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012; 41 ( 24 ): 8075.; Yu W, Porosoff MD, Chen JG. Review of Ptâ based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev. 2012; 112 ( 11 ): 5780.; Andersen M, Medford AJ, Nørskov JK, Reuter K. Scalingâ relationâ based analysis of bifunctional catalysis: the case for homogeneous bimetallic alloys. ACS Catal. 2017; 7 ( 6 ): 3960.; Peters B, Scott SL. Single atom catalysts on amorphous supports: a quenched disorder perspective. J Chem Phys. 2015; 142 ( 10 ): 104708.; Jinnouchi R, Asahi R. Predicting catalytic activity of nanoparticles by a DFTâ aided machineâ learning algorithm. J Phys Chem Lett. 2017; 8 ( 17 ): 4279.; Li Z, Wang S, Chin WS, Achenie LE, Xin H. Highâ throughput screening of bimetallic catalysts enabled by machine learning. J Mater Chem A. 2017; 5 ( 46 ): 24131.; Ulissi ZW, Singh AR, Tsai C, Nørskov JK. Automated discovery and construction of surface phase diagrams using machine learning. J Phys Chem Lett. 2016; 7 ( 19 ): 3931.; van Santen RA. Molecular Catalytic Kinetics Concepts. Weinheim: WILEYâ VCH Verlag GmbH, 2010.; Greeley J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng. 2016; 7 ( 1 ): 605.; Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009; 1 ( 1 ): 37.; Ulissi ZW, Tang MT, Xiao J, Liu X, Torelli DA, Karamad M, Cummins K, Hahn C, Lewis NS, Jaramillo TF, Chan K, Nørskov JK. Machineâ learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO 2 reduction. ACS Catal. 2017; 7 ( 10 ): 6600.; Peterson AA, Nørskov JK. Activity descriptors for CO 2 electroreduction to methane on transitionâ metal catalysts. J Phys Chem Lett. 2012; 3 ( 2 ): 251.; Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS. Nickelâ galliumâ catalyzed electrochemical reduction of CO 2 to highly reduced products at low overpotentials. ACS Catal. 2016; 6 ( 3 ): 2100.; Reuter K, Stampf C, Scheffler M. Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions. In: Yip S, editor. Handbook of Materials Modeling, Dordrecht: Springer, 2005: 149.; Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. 2015; 114 ( 10 ): 105503.; Sinthika S, Waghmare UV, Thapa R. Structural and electronic descriptors of catalytic activity of grapheneâ based materials: firstâ principles theoretical analysis. Small. 2018;14(10):1703609.; Calleâ Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science. 2015; 350 ( 6257 ): 185.; Ma X, Xin H. Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys Rev Lett. 2017; 118 ( 3 ): 036101.; Xin H, Linic S. Communications: exceptions to the dâ band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal dâ states. J Chem Phys. 2010; 132 ( 22 ): 221101.; Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015; 115 ( 16 ): 1058.; Noh J, Kim J, Back S, Jung Y. Catalyst design using actively learned machine with nonâ ab initio input features towards CO 2 reduction reactions. arXiv preprint arXiv:1709.04576, 2017.; Takigawa I, Shimizu Kâ I, Tsuda K, Takakusagi S. Machineâ learning prediction of the dâ band center for metals and bimetals. RSC Adv. 2016; 6 ( 58 ): 52587.; Li Z, Ma X, Xin H. Feature engineering of machineâ learning chemisorption models for catalyst design. Catal Today. 2017; 280 ( Part 2 ): 232.; Wexler RB, Martirez JMP, Rappe AM. Chemical pressureâ driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J Am Chem Soc. 2018; 140 ( 13 ): 4678.; Pankajakshan P, Sanyal S, de Noord OE, Bhattacharya I, Bhattacharyya A, Waghmare U. Machine learning and statistical analysis for materials science: stability and transferability of fingerprint descriptors and chemical insights. Chem Mater. 2017; 29 ( 10 ): 4190.; Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyang R, Levchenko SV, Draxl C, Scheffler M. Learning physical descriptors for materials science by compressed sensing. New J Phys. 2017; 19 ( 2 ): 023017.; Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheffler M. New tolerance factor to predict the stability of perovskite oxides and halides. arXiv preprint arXiv:1801.07700, 2018.; Corma A, Serra JM, Serna P, Moliner M. Integrating highâ throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models. J Catal. 2005; 232 ( 2 ): 335.; Ras Eâ J, McKay B, Rothenberg G. Understanding catalytic biomass conversion through data mining. Top Catal. 2010; 53 ( 15â 18 ): 1202.; Madaan N, Shiju NR, Rothenberg G. Predicting the performance of oxidation catalysts using descriptor models. Catal Sci Technol. 2016; 6 ( 1 ): 125.; Leonard KC, Bard AJ. Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction. J Am Chem Soc. 2013; 135 ( 42 ): 15885.; Ras Eâ J, Louwerse MJ, Rothenberg G. New tricks by very old dogs: predicting the catalytic hydrogenation of HMF derivatives using Slaterâ type orbitals. Catal Sci Technol. 2012; 2 ( 12 ): 2456.; OdabaŠı à , Günay ME, Yıldırım R. Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012. Int J Hydrogen Energy. 2014; 39 ( 11 ): 5733.; Boley M, Goldsmith BR, Ghiringhelli LM, Vreeken J. Identifying consistent statements about numerical data with dispersionâ corrected subgroup discovery. Data Min Knowl Discov. 2017; 31 ( 5 ): 1391.; Herrera F, Carmona CJ, González P, Del Jesus MJ. An overview on subgroup discovery: foundations and applications. Knowl Inf Syst. 2011; 29 ( 3 ): 495.; Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM. Uncovering structureâ property relationships of materials by subgroup discovery. New J Phys. 2017; 19 ( 1 ): 013031.; Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Sim. 2016; 14 ( 3 ): 1153.; Botu V, Batra R, Chapman J, Ramprasad R. Machine learning force fields: construction, validation, and outlook. J Phys Chem C. 2017; 121 ( 1 ): 511.; Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller Kâ R. Bypassing the Kohnâ Sham equations with machine learning. Nat Commun. 2017; 8 ( 1 ): 872.; Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantumâ chemical insights from deep tensor neural networks. Nat Commun. 2017; 8: 13890.; Boes JR, Groenenboom MC, Keith JA, Kitchin JR. Neural network and ReaxFF comparison for Au properties. Int J Quantum Chem. 2016; 116 ( 13 ): 979.; Dolgirev PE, Kruglov IA, Oganov AR. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv. 2016; 6 ( 8 ): 085318.; Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed. 2017; 56 ( 42 ): 12828.; Campbell CT, Peden CH. Oxygen vacancies and catalysis on ceria surfaces. Science. 2005; 309 ( 5735 ): 713.; Su Yâ Q, Filot IAW, Liu Jâ X, Tranca I, Hensen EJM. Charge transport over the defective CeO 2 (111) surface. Chem Mater. 2016; 28 ( 16 ): 5652.; Goldsmith BR, Sanderson ED, Ouyang R, Li Wâ X. COâ and NOâ Induced disintegration and redispersion of threeâ way catalysts rhodium, palladium, and platinum: an ab initio thermodynamics study. J Phys Chem C. 2014; 118 ( 18 ): 9588.; Su Yâ Q, Liu Jâ X, Filot IAW, Hensen EJM. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chem Mater. 2017; 29 ( 21 ): 9456.; Boes JR, Kitchin JR. Neural network predictions of oxygen interactions on a dynamic Pd surface. Mol Simul. 2017; 43 ( 5â 6 ): 346.; Zhai H, Alexandrova AN. Fluxionality of catalytic clusters: when it matters and how to address it. ACS Catal. 2017; 7 ( 3 ): 1905.; Ouyang R, Xie Y, Jiang Dâ e. Global minimization of gold clusters by combining neural network potentials and the basinâ hopping method. Nanoscale. 2015; 7 ( 36 ): 14817.; Senftle TP, van Duin AC, Janik MJ. Methane activation at the Pd/CeO 2 interface. ACS Catal. 2017; 7 ( 1 ): 327.; Boes JR, Kitchin JR. Modeling segregation on AuPd(111) surfaces with density functional theory and Monte Carlo simulations. J Phys Chem C. 2017; 121 ( 6 ): 3479.; Zhai H, Alexandrova AN. Ensembleâ average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J Chem Theory Comput. 2016; 12 ( 12 ): 6213.; Sun G, Sautet P. Metastable structures in cluster catalysis from firstâ principles: structural ensemble in reaction conditions and metastability triggered reactivity. J Am Chem Soc. 2018; 140 ( 8 ): 2812.; Liu Jâ X, Su Y, Filot IA, Hensen EJ. A linear scaling relation for CO oxidation on CeO 2 â supported Pd. J Am Chem Soc. 2018; 140 ( 13 ): 4580.; Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL. Phenomena affecting catalytic reactions at solidâ liquid interfaces. ACS Catal. 2016; 6 ( 12 ): 8286.; Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 2014; 14 ( 5 ): 2670.; Artrith N, Kolpak AM. Grand canonical molecular dynamics simulations of Cuâ Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput Mater Sci. 2015; 110: 20.; Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller Kâ R. Machine learning of accurate energyâ conserving molecular force fields. Sci Adv. 2017; 3 ( 5 ): e1603015.; Li L, Snyder JC, Pelaschier IM, Huang J, Niranjan UN, Duncan P, Rupp M, Müller KR, Burke K. Understanding machineâ learned density functionals. Int J Quantum Chem. 2016; 116 ( 11 ): 819.; Peterson AA, Christensen R, Khorshidi A. Addressing uncertainty in atomistic machine learning. Phys Chem Chem Phys. 2017; 19 ( 18 ): 10978.; Hutchinson ML, Antono E, Gibbons BM, Paradiso S, Ling J, Meredig B. Overcoming data scarcity with transfer learning. arXiv preprint arXiv:1711.05099, 2017.; Khorshidi A, Peterson AA. Amp: a modular approach to machine learning in atomistic simulations. Comput Phys Commun. 2016; 207: 310.; Kolb B, Lentz LC, Kolpak AM. Discovering charge density functionals and structureâ property relationships with PROPhet: a general framework for coupling machine learning and firstâ principles methods. Sci Rep. 2017; 7 ( 1 ): 1192.

5
Academic Journal

File Description: application/pdf

Relation: McRoberts, D. Brent; Quiring, Steven M.; Guikema, Seth D. (2018). "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors." Risk Analysis 38(12): 2722-2737.; http://hdl.handle.net/2027.42/147200; Risk Analysis; Dobos R, Sinclair H, Hipple, K. User Guide National Commodity Crop Productivity Index (NCCPI) Version 1.0. U.S. Department of Agriculture, Natural Resources Conservation Service, 2012.; Davidson RA, Haibin L, Sarpong IK, Sparks P, Rosowsky DV. Electric power distribution system performance in Carolina hurricanes. Natural Hazards Review, 2003; 8: 36 – 45.; Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K. Completion of the 2011 National Land Cover Database for the Conterminous United States—Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, 2015; 81 ( 5 ): 345 – 354.; Anderson JR. A land use and land cover classification system for use with remote sensor data. U.S. Government Printing Office, 1976.; Guikema SD, Davidson RA, Liu H. Statistical models of the effects of tree trimming on power system outages. IEEE Transactions on Power Delivery, 2006; 21 ( 3 ): 1549 – 1557.; Maderia CM. Importance of tree species and precipitation for modeling hurricane‐induced power outages, Master’s Thesis, Department of Geography, Texas A&M University, August 2015.; Krist Jr. FJ, Ellenwood JR, Woods ME, McMahan AJ, Cowardin JP, Ryerson DE, Sapio FJ, Zweifler MO, Romero SA. 2013–2027 National Insect and Disease Forest Risk Assessment. U.S. Forest Service, 2012.; Van Dersal WR, Mulford FL, Thornthwaite CW. Native woody plants of the United States: Their erosion‐control and wildlife values. USDA Miscellaneous Publication 303, 1938.; Burns RM, Honkala BH. Silvics of North America: 1. Conifers; 2. Hardwoods. U.S. Forest Service Agriculture Handbook 654, Washington, DC, USA, 1990.; Stoecklein MC. The Complete Plant Selection Guide for Landscape Design. Purdue University Press, West Lafayette, IN, USA, 2001.; U.S. Forest Service Tree List. 2015. Available at: http://www.fs.fed.us/database/feis/plants/tree/.; Wood Database. 2015. Available at: http://www.wood-database.com.; Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations Served by the USDA‐NRCS. U.S. Department of Agriculture, Natural Resources Conservation Service, 2015. Available at: https://gdg.sc.egov.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628.; Liang X, Wood EF, Lettenmaier DP. Surface soil moisture parameterization of the VIC‐2L model: Evaluation and modification. Global and Planetary Change, 1996; 13 ( 1 ): 195 – 206.; Hosking JRM, Wallis JR. Regional Frequency Analysis: An Approach Based on L‐Moments. Cambridge University Press, New York, NY, USA, 2005.; Andreadis KM, Clark EA, Wood AW, Hamlet AF, Lettenmaier DP. Twentieth‐century drought in the conterminous United States. Journal of Hydrometeorology, 2005; 6 ( 6 ): 985 – 1001.; Mo KC, Long LN, Xia Y, Yang SK, Schemm, JE, Ek M. Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. Journal of Hydrometeorology, 2011; 12 ( 2 ): 181 – 205.; McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. Pp. 179 – 184 in Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, American Meteorological Society, 1993.; Guttman NB. Comparing the Palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association, 1998; 34 ( 1 ): 113 – 121.; Heim Jr RR. A review of twentieth‐century drought indices used in the United States. Bulletin of the American Meteorological Society, 2002; 83 ( 8 ): 1149 – 1165.; Hastie T, JRM, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, New York, NY, 2009.; Liaw A, Wiener M. Classification and regression by randomforest. R News, 2002; 2 ( 3 ): 18 – 22.; Chapman L. Assessing topographic exposure. Meteorological Applications, 2000; 7 ( 4 ): 335 – 340.; Reed DA. Electric utility distribution analysis for extreme winds. Journal of Wind Engineering and Industrial Aerodynamics, 2008; 96 ( 1 ): 123 – 140.; Liu H, Davidson RA, Rosowsky DV, Stedinger JR. Negative binomial regression of electric power outages in hurricanes. Journal of Infrastructure Systems, 2005; 11 ( 4 ): 258 – 267.; Liu H, Davidson RA, Apanasovich TV. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms. Reliability Engineering, 2008; 93: 875 – 890.; Han SR, Guikema SD, Quiring SM. Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models. Risk Analysis, 2009; 29 ( 10 ): 1443 – 1453.; Han SR, Guikema SD, Quiring SM, Lee K, Rosowsky D, Davidson RA. Estimating the spatial distribution of power outages during hurricanes in the Gulf Coast region. Reliability Engineering and System Safety, 2009; 94 ( 2 ): 199 – 210.; Nateghi R, Guikema SD, Quiring, SM. Power outage estimation for tropical cyclones: Improved accuracy with simpler models. Risk Analysis, 2014; 34 ( 6 ): 1069 – 1078.; Breiman L. Random forests. Machine Learning, 2001; 45 ( 1 ): 5 – 32.; Guikema SD, Nateghi R, Quiring SM, Reilly A, Gao M. Predicting hurricane power outages to support storm response planning. IEEE Access, 2014; 2: 1364 – 1373.; Guikema SD, Quiring, SM. Hybrid datamining regression for infrastructure risk assessment based on zero‐inflated data. Reliability Engineering & System Safety, 2012; 99: 178 – 182.; Reilly AC, Guikema SD. Bayesian multiscale modeling of spatial infrastructure performance predictions. Journal of Infrastructure Systems, 2014; 21 ( 2 ): 04014036.; Guikema SD, Nateghi R, Quiring SM. Predicting infrastructure loss of service from natural hazards with statistical models: Experiences and advances with hurricane power outage prediction. Proceedings of the 22nd European Safety and Reliability Conference, Amsterdam, 2013.; Guikema SD, Quiring SM, Han SR. Prestorm estimation of hurricane damage to electric power distribution systems. Risk Analysis, 2010; 30 ( 12 ): 1744 – 1752.; Quiring SM, Zhu L, Guikema SD. Importance of soil and elevation characteristics for modeling hurricane‐induced power outages. Natural Hazard, 2011; 58: 365 – 390.; Danielson JJ, Gesch DB. Global multi‐resolution terrain elevation data 2010 (GMTED2010). No. 2011‐1073. U.S. Geological Survey, 2011.

6
Academic Journal

Contributors: Library, University of Michigan, Doane University, Ann Arbor

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/139596; https://doi.org/10.1080/10691316.2017.1338979; College & Undergraduate Libraries; orcid:0000-0003-3956-0606; orcid:0000-0002-5622-8560; Cordell, Sigrid; 0000-0003-3956-0606; Gomis, Melissa; 0000-0002-5622-8560

7
Academic Journal

File Description: application/pdf

Relation: Linden, Ariel; Yarnold, Paul R. (2016). "Using machine learning to identify structural breaks in single‐group interrupted time series designs." Journal of Evaluation in Clinical Practice 22(6): 851-855.; https://hdl.handle.net/2027.42/135143; Journal of Evaluation in Clinical Practice; Abadie, A., Diamond, A. & Hainmueller, J. ( 2010 ) Synthetic control methods for comparative case studies: estimating the effect of California’s tobacco control program. Journal of the American Statistical Association, 105, 493 – 505.; Riley, W. T., Glasgow, R. E., Etheredge, L. & Abernethy, A. P. ( 2013 ) Rapid, responsive, relevant (R3) research: a call for a rapid learning health research enterprise. Clinical and Translational Medicine, 2, 1 – 6.; Effective Practice and Organisation of Care (EPOC). ( 2015 ) Interrupted Time Series (ITS) Analyses. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services. Available at: http://epoc.cochrane.org/epoc‐specific‐resources‐review‐authors (Accessed date 26 February 2016); Hansen, B. E. ( 2001 ) The new econometrics of structural change: dating breaks in US labor productivity. The Journal of Economic Perspectives, 15, 117 – 128.; Perron, P. ( 2006 ) Dealing with structural breaks. In Palgrave Handbook of Econometrics: Econometric Theory, Vol I (eds T. C. Mills & K. Patterson ), pp. 278 – 352. Basingstoke, UK: Palgrave.; Yarnold, P. R. & Soltysik, R. C. ( 1991 ) Theoretical distributions of optima for univariate discrimination of random data. Decision Sciences, 22, 739 – 752.; Linden, A. ( 2006 ) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132 – 139.; Linden, A. & Yarnold, P. R. ( 2016 ) Using data mining techniques to characterize participation in observational studies. Journal of Evaluation in Clinical Practice, 22, 835 – 843.; Linden, A. & Yarnold, P. R. ( 2016 ) Using machine learning to assess covariate balance in matching studies. Journal of Evaluation in Clinical Practice, 22, 844 – 850.; Linden, A. ( 2015b ) LOOCLASS: stata module for generating classification statistics of leave‐One‐Out cross‐validation for binary outcomes. Statistical Software Components s458032, Boston College Department of Economics. Downloadable from http://ideas.repec.org/c/boc/bocode/s458032.html [Accessed on 26 February 2016].; Linden, A. ( 2015c ) CLASSTABI: Stata module for generating classification statistics and table using summarized data. Statistical Software Components s458127, Boston College Department of Economics. Downloadable from https://ideas.repec.org/c/boc/bocode/s458127.html [Accessed on 26 February 2016]; Yarnold, P. R. & Soltysik, R. C. ( 2005 ) Optimal Data Analysis: A Guidebook With Software for Windows. Washington, DC: APA Books.; Yarnold, P.R., & Soltysik, R.C. ( 2016 ) Maximizing Predictive Accuracy. Chicago, IL: ODA Books. DOI:10.13140/RG.2.1.1368.3286; Breslow, L. & Johnson, M. ( 1993 ) California’s Proposition 99 on Tobacco, and Its Impact. Annual Review of Public Health, 14, 585 – 604.; Abadie, A., Diamond, A., & Hainmueller, J. ( 2014 ) SYNTH: Stata module to implement synthetic control methods for comparative case studies. Statistical Software Components S457334, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s457334.html; Orzechowski, W. & Walker, R. C. ( 2005 ) The Tax Burden on Tobacco. Historical Compilation vol. 40. Arlington, VA: Orzechowski & Walker.; Grimm, L. G. & Yarnold, P. R. (eds) ( 1995 ) Reading and Understanding Multivariate Statistics. Washington, D.C.: APA Books.; Grimm, L. G. & Yarnold, P. R. (eds) ( 2000 ) Reading and Understanding More Multivariate Statistics. Washington, D.C.: APA Books.; Witten, I. H., Frank, E. & Hall, M. A. ( 2011 ) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. San Francisco: Morgan Kaufmann.; Linden, A., Adams, J. & Roberts, N. ( 2005 ) Evaluating disease management program effectiveness: an introduction to the bootstrap technique. Disease Management and Health Outcomes, 13, 159 – 167.; Linden, A., Adams, J. & Roberts, N. ( 2006 ) Strengthening the case for disease management effectiveness: unhiding the hidden bias. Journal of Evaluation in Clinical Practice, 12, 140 – 147.; Andrews, D. W. K. ( 1993 ) Tests for parameter instability and structural change with unknown change point. Econometrica, 61, 821 – 856.; Yarnold, P. R. ( 2013 ) Percent oil‐based energy consumption and average percent GDP growth: a small sample UniODA analysis. Optimal Data Analysis, 2, 60 – 61.; Yarnold, P. R. ( 2015 ) UniODA vs. McNemar’s test: a small sample analysis. Optimal Data Analysis, 4, 27 – 28.; Linden, A. & Adams, J. L. ( 2011 ) Applying a propensity‐score based weighting model to interrupted time series data: improving causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 17, 1231 – 1238.; Linden, A. ( 2015a ) Conducting interrupted time‐series analysis for single‐ and multiple‐group comparisons. The Stata Journal, 15, 480 – 500.; Campbell, D. T. & Stanley, J. C. ( 1966 ) Experimental and Quasi‐Experimental Designs for Research. Chicago, IL: Rand McNally.; Shadish, W. R., Cook, T. D. & Campbell, D. T. ( 2002 ) Experimental and Quasi‐Experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin.; Linden, A. ( 2007 ) Estimating the effect of regression to the mean in health management programs. Disease Management and Health Outcomes, 15, 7 – 12.; Linden, A. ( 2013 ) Assessing regression to the mean effects in health care initiatives. BMC Medical Research Methodology, 13, 1 – 7.; Linden, A., Adams, J. & Roberts, N. ( 2004 ) The generalizability of disease management program results: getting from here to there. Managed Care Interface, 17, 38 – 45.; Biglan, A., Ary, D. & Wagenaar, A. C. ( 2000 ) The value of interrupted time‐series experiments for community intervention research. Prevention Science, 1, 31 – 49.; Gillings, D., Makuc, D. & Siegel, E. ( 1981 ) Analysis of interrupted time series mortality trends: an example to evaluate regionalized perinatal care. American Journal of Public Health, 71, 38 – 46.; Muller, A. ( 2004 ) Florida’s motorcycle helmet law repeal and fatality rates. American Journal of Public Health, 94, 556 – 558.; Briesacher, B. A., Soumerai, S. B., Zhang, F., Toh, S., Andrade, S. E., Wagner, J. L., Shoaibi, A. & Gurwitz, J. H. ( 2013 ) A critical review of methods to evaluate the impact of FDA regulatory actions. Pharmacoepidemiology and Drug Safety, 22, 986 – 994.; Ramsay, C. R., Matowe, L., Grilli, R., Grimshaw, J. M. & Thomas, R. E. ( 2003 ) Interrupted time series designs in health technology assessment: lessons from two systematic reviews of behavior change strategies. International Journal of Technology Assessment in Health Care, 19, 613 – 623.

8
Academic Journal

File Description: application/pdf

Relation: Linden, Ariel; Yarnold, Paul R. (2016). "Using data mining techniques to characterize participation in observational studies." Journal of Evaluation in Clinical Practice 22(6): 835-843.; http://hdl.handle.net/2027.42/134951; Journal of Evaluation in Clinical Practice; Feinglass, J., Yarnold, P. R., Martin, G. J. & McCarthy, W. J. ( 1998 ) A classification tree analysis of selection for discretionary treatment. Medical Care, 36, 740 – 747.; Yarnold, P. R. & Soltysik, R. C. ( 2016 ) Maximizing Predictive Accuracy. Chicago, IL: ODA Books. doi:10.13140/RG.2.1.1368.3286.; Linden, A., Adams, J. & Roberts, N. ( 2003 ) An assessment of the total population approach for evaluating disease management program effectiveness. Disease Management, 6, 93 – 102.; Linden, A. ( 2011 ) Identifying spin in health management evaluations. Journal of Evaluation in Clinical Practice, 17, 1223 – 1230.; Linden, A. & Samuels, S. J. ( 2013 ) Using balance statistics to determine the optimal number of controls in matching studies. Journal of Evaluation in Clinical Practice, 19, 968 – 975.; Fernández‐Delgado, M., Cernadas, E., Barro, S. & Amorim, D. ( 2014 ) Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15, 3133 – 3181.; Noble, W. S. ( 2006 ) What is a support vector machine? Nature Biotechnology, 24, 1565 – 1567.; Breiman, L. ( 2001 ) Random forests. Machine Learning, 45, 5 – 32.; Witten, I. H., Frank, E. & Hall, M. A. ( 2011 ) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. San Francisco, CA: Morgan Kaufmann.; Breiman, L., Friedman, J., Olshen, R. & Stone, C. ( 1984 ) Classification and Regression Trees. Belmont, CA: Wadsworth International Group.; Quinlan, J. R. ( 1993 ) C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.; Yarnold, P. R., Soltysik, R. C. & Bennett, C. L. ( 1997 ) Predicting in‐hospital mortality of patients with AIDS‐related Pneumocystis carinii pneumonia: an example of hierarchically optimal classification tree analysis. Statistics in Medicine, 16, 1451 – 1463.; Yarnold, P. R. & Bryant, F. B. ( 2015 ) Obtaining a hierarchically optimal CTA model via UniODA software. Optimal Data Analysis, 4, 36 – 53.; Yarnold, P. R. & Bryant, F. B. ( 2015 ) Obtaining an enumerated CTA model via Automated CTA Software. Optimal Data Analysis, 4, 54 – 61.; Linden, A. & Roberts, N. ( 2005 ) A users guide to the disease management literature: recommendations for reporting and assessing program outcomes. American Journal of Managed Care, 11, 81 – 90.; Altman, D. G. & Bland, M. ( 1994 ) Diagnostic tests 2: predictive values. British Medical Journal, 309, 102.; Yourman, L. C., Lee, S. J., Schonberg, M. A., Widera, E. W. & Smith, A. K. ( 2012 ) Prognostic indices for older adults: a systematic review. JAMA: The Journal of the American Medical Association, 307, 182 – 192.; Soltysik, R. C. & Yarnold, P. R. ( 2010 ) Automated CTA software: fundamental concepts and control commands. Optimal Data Analysis, 1, 144 – 160.; Linden, A. ( 2015 ) CLASSTABI: Stata module for generating classification statistics and table using summarized data. Statistical Software Components s458127, Boston College Department of Economics. Available at: https://ideas.repec.org/c/boc/bocode/s458127.html (last accessed 30 December 2015).; Linden, A. ( 2015 ) LOOCLASS: Stata module for generating classification statistics of Leave‐One‐Out cross‐validation for binary outcomes. Statistical Software Components s458032, Boston College Department of Economics. Available at: http://ideas.repec.org/c/boc/bocode/s458032.html (last accessed 23 November 2015).; Athey, S. & Imbens, G. ( 2015 ) Recursive Partitioning for Heterogeneous Causal Effects. Working Paper. Available at: http://arxiv.org/abs/1504.01132 (last accessed 20 January 2016).; Linden, A., Adams, J. & Roberts, N. ( 2004 ) Evaluating disease management program effectiveness: an introduction to survival analysis. Disease Management, 7, 180 – 190.; Linden, A., Adams, J. & Roberts, N. ( 2006 ) Strengthening the case for disease management effectiveness: unhiding the hidden bias. Journal of Evaluation in Clinical Practice, 12, 140 – 147.; Hand, D. J. ( 2000 ) Mining medical data. Statistical Methods in Medical Research, 9, 305 – 307.; Smyth, P. ( 2000 ) Data mining: data analysis on a grand scale. Statistical Methods in Medical Research, 9, 309 – 327.; Iavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R. & Geissbuhler, A. ( 2009 ) Clinical data mining: a review. In IMIA Yearbook of Medical Informatics, Geissbuhler, A., Kulikowski, C. (editors), 48, Suppl 1, 121 – 133.; Breiman, L. ( 2001 ) Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statistical Science, 16, 199 – 231.; Linden, A. ( 2006 ) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132 – 139.; Yarnold, P. R. & Soltysik, R. C. ( 2005 ) Optimal Data Analysis: A Guidebook with Software for Windows. Washington, DC: APA Books.; Linden, A., Adams, J. & Roberts, N. ( 2004 ) The generalizability of disease management program results: getting from here to there. Managed Care Interface, 17, 38 – 45.

9
Academic Journal

File Description: application/pdf

Relation: Linden, Ariel; Yarnold, Paul R. (2016). "Using machine learning to assess covariate balance in matching studies." Journal of Evaluation in Clinical Practice 22(6): 844-850.; http://hdl.handle.net/2027.42/135124; Journal of Evaluation in Clinical Practice; Witten, I. H., Frank, E. & Hall, M. A. ( 2011 ) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. San Francisco: Morgan Kaufmann.; Yarnold, P. R. & Soltysik, R. C. ( 1991 ) Theoretical distributions of optima for univariate discrimination of random data. Decision Sciences, 22, 739 – 752.; Carmony, L., Yarnold, P. R. & Naeymi‐Rad, F. ( 1997 ) One‐tailed type I error rates for balanced two‐category UniODA with a random ordered attribute. Annals of Operations Research, 74, 223 – 238.; Flury, B. K. & Reidwyl, H. ( 1986 ) Standard distance in univariate and multivariate analysis. The American Statistician, 40, 249 – 251.; Austin, P. C. ( 2009 ) Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Statistics in Medicine, 28, 3083 – 3107.; Normand, S. L. T., Landrum, M. B., Guadagnoli, E., Ayanian, J. Z., Ryan, T. J., Cleary, P. D. & McNeil, B. J. ( 2001 ) Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: a matched analysis using propensity scores. Journal of Clinical Epidemiology, 54, 387 – 398.; Yarnold, P. R. & Soltysik, R. C. ( 2010 ) Precision and convergence of Monte Carlo estimation of two‐category UniODA two‐tailed p. Optimal Data Analysis, 1, 43 – 45.; Yarnold, P. R., Soltysik, R. C. & Martin, G. J. ( 1994 ) Heart rate variability and susceptibility for sudden cardiac death: An example of multivariable optimal discriminant analysis. Statistics in Medicine, 13, 1015 – 1021.; Linden, A. & Adams, J. L. ( 2010a ) Using propensity score‐based weighting in the evaluation of health management programme effectiveness. Journal of Evaluation in Clinical Practice, 16, 175 – 179.; Linden, A. & Adams, J. L. ( 2010b ) Evaluating health management programmes over time. Application of propensity score‐based weighting to longitudinal data. Journal of Evaluation in Clinical Practice, 16, 180 – 185.; Linden, A. & Adams, J. L. ( 2011 ) Applying a propensity‐ score based weighting model to interrupted time series data: improving causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 17, 1231 – 1238.; Linden, A. & Adams, J. L. ( 2012 ) Combining the regression‐discontinuity design and propensity‐score based weighting to improve causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 18, 317 – 325.; Linden, A. ( 2014 ) Combining propensity score‐based stratification and weighting to improve causal inference in the evaluation of health care interventions. Journal of Evaluation in Clinical Practice, 20, 1065 – 1071.; Linden, A., Adams, J. & Roberts, N. ( 2005 ) Evaluating disease management program effectiveness: an introduction to the bootstrap technique. Disease Management and Health Outcomes, 13, 159 – 167.; Linden, A., Adams, J. & Roberts, N. ( 2004 ) The generalizability of disease management program results: getting from here to there. Managed Care Interface, 17, 38 – 45.; Yarnold, P. R. ( 2010 ) GenUniODA vs. log‐linear model: modeling discrimination in organizations. Optimal Data Analysis, 1, 59 – 61.; Yarnold, P. R. ( 1996 ) Discriminating geriatric and non‐geriatric patients using functional status information: an example of classification tree analysis via UniODA. Educational and Psychological Measurement, 56, 656 – 667.; Yarnold, P. R. & Bryant, F. B. ( 2015a ) Obtaining a hierarchically optimal CTA model via UniODA software. Optimal Data Analysis, 4, 36 – 53.; Yarnold, P. R. & Bryant, F. B. ( 2015b ) Obtaining an enumerated CTA model via automated CTA software. Optimal Data Analysis, 4, 54 – 60.; Athey, S. & Imbens, G. ( 2015 ) Machine learning methods for estimating heterogeneous causal effects. Working Paper. Downloadable from http://arxiv.org/abs/1504.01132 [Accessed on 30 November 2015].; Linden, A. & Adams, J. ( 2006 ) Evaluating disease management program effectiveness: an introduction to instrumental variables. Journal of Evaluation in Clinical Practice, 12, 148 – 154.; Linden, A., Adams, J. & Roberts, N. ( 2004 ) Evaluating disease management program effectiveness: an introduction to survival analysis. Disease Management, 7, 180 – 190.; Linden, A., Adams, J. & Roberts, N. ( 2006 ) Strengthening the case for disease management effectiveness: unhiding the hidden bias. Journal of Evaluation in Clinical Practice, 12, 140 – 147.; Stuart, E. A. ( 2010 ) Matching methods for causal inference: a review and a look forward. Statistical Science, 25, 1 – 21.; Rubin, D. B. ( 1973 ) Matching to remove bias in observational studies. Biometrics, 29, 159 – 184.; Linden, A. & Samuels, S. J. ( 2013 ) Using balance statistics to determine the optimal number of controls in matching studies. Journal of Evaluation in Clinical Practice, 19, 968 – 975.; Linden, A. ( 2015 ) Graphical displays for assessing covariate balance in matching studies. Journal of Evaluation in Clinical Practice, 21, 242 – 247.; Linden, A., Uysal, S. D., Ryan, A. & Adams, J. L. ( 2016 ) Estimating causal effects for multivalued treatments: a comparison of approaches. Statistics in Medicine, 35, 534 – 552.; Yarnold, P. R. & Soltysik, R. C. ( 2005 ) Optimal Data Analysis: A Guidebook with Software for Windows. Washington, DC: APA Books.; Yarnold, P. R., & Soltysik, R. C. ( 2016 ) Maximizing Predictive Accuracy. Chicago, IL: ODA Books. DOI:10.13140/RG.2.1.1368.3286; Linden, A., Adams, J. & Roberts, N. ( 2003 ) An assessment of the total population approach for evaluating disease management program effectiveness. Disease Management, 6, 93 – 102.; Linden, A. & Yarnold, P. R. (In Print) Using data mining techniques to characterize participation in observational studies. Journal of Evaluation in Clinical Practice, 22, 835 – 843.; Linden, A. ( 2006 ) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132 – 139.; Linden, A. ( 2011 ) Identifying spin in health management evaluations. Journal of Evaluation in Clinical Practice, 17, 1223 – 1230.; Rosenbaum, P. R. & Rubin, D. B. ( 1983 ) The central role of propensity score in observational studies for causal effects. Biometrika, 70, 41 – 55.; Rosenbaum, P. R. ( 1989 ) Optimal matching for observational studies. Journal of the American Statistical Association, 84, 1024 – 1302.

10
Academic Journal

File Description: application/pdf

Relation: Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K (2016). "Using machine learning to model dose–response relationships." Journal of Evaluation in Clinical Practice 22(6): 856-863.; http://hdl.handle.net/2027.42/134965; Journal of Evaluation in Clinical Practice; Newson, R. B. ( 2010 ) Frequentist q‐values for multiple‐test procedures. The Stata Journal, 10, 568 – 584.; Eisenbeis, R. A. ( 1977 ) Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32, 875 – 900.; Nishikawa, K., Kubota, Y. & Ooi, T. ( 1983 ) Classification of proteins into groups based on amino acid composition and other characters, II: grouping into four types. Journal of Biochemistry, 94, 997 – 1007.; Yarnold, P. R. ( 1992 ) Statistical analysis for single‐case designs. In Social Psychological Applications to Social Issues: Vol. 2. Methodological Issues in Applied Social Research (eds F. B. Bryant, L. Heath, E. Posavac, J. Edwards, S. Tindale, E. Henderson & Y. Suarez‐Balcazar ), pp. 177 – 197. New York: Plenum.; Linden, A., & Yarnold, P.R. ( 2016 ) Using data mining techniques to characterize participation in observational studies. Journal of Evaluation in Clinical Practice, 22, 835 – 843.; Linden, A., Adams, J. & Roberts, N. ( 2004 ) The generalizability of disease management program results: getting from here to there. Managed Care Interface, 17, 38 – 45.; Witten, I. H., Frank, E. & Hall, M. A. ( 2011 ) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. San Francisco: Morgan Kaufmann.; Linden, A., Adams, J. & Roberts, N. ( 2005 ) Evaluating disease management program effectiveness: an introduction to the bootstrap technique. Disease Management and Health Outcomes, 13, 159 – 167.; Huber, P. J. ( 1967 ) The behavior of maximum likelihood estimates under nonstandard conditions. In Vol. 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 221 – 233. Berkeley: University of California Press.; White, H. L. Jr. ( 1980 ) A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817 – 838.; Sidak, Z. ( 1967 ) Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62, 626 – 633.; Yarnold, P. R. ( 1996 ) Characterizing and circumventing Simpson’s paradox for ordered bivariate data. Educational and Psychological Measurement, 56, 430 – 442.; Linden, A. ( 2006 ) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132 – 139.; Iavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R. & Geissbuhler, A. ( 2009 ) Clinical data mining: a review. In IMIA Yearbook of Medical Informatics. (eds A. Geissbuhler, C. Kulikowski ), 48, Suppl 1, pp. 121 – 133.; Couto, J., Webster, L., Romney, M., Leider, H. & Linden, A. ( 2009 ) Using an algorithm applied to urine drug screening to assess adherence to an OxyContin regimen. Journal of Opioid Management, 5, 359 – 364.; Couto, J., Webster, L., Romney, M., Leider, H. & Linden, A. ( 2011 ) Use of an algorithm applied to urine drug screening to assess adherence to a hydrocodone regimen. Journal of Clinical Pharmacology & Therapeutics, 36, 200 – 207.; Linden, A. & Adams, J. L. ( 2010a ) Using propensity score‐based weighting in the evaluation of health management programme effectiveness. Journal of Evaluation in Clinical Practice, 16, 175 – 179.; Linden, A. & Adams, J. L. ( 2010b ) Evaluating health management programmes over time. Application of propensity score‐based weighting to longitudinal data. Journal of Evaluation in Clinical Practice, 16, 180 – 185.; Linden, A. & Adams, J. L. ( 2011 ) Applying a propensity‐score based weighting model to interrupted time series data: improving causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 17, 1231 – 1238.; Linden, A. & Adams, J. L. ( 2012 ) Combining the regression‐discontinuity design and propensity‐score based weighting to improve causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 18, 317 – 325.; Linden, A. ( 2014 ) Combining propensity score‐based stratification and weighting to improve causal inference in the evaluation of health care interventions. Journal of Evaluation in Clinical Practice, 20, 1065 – 1071.; Linden, A., Uysal, S. D., Ryan, A. & Adams, J. L. ( 2016 ) Estimating causal effects for multivalued treatments: a comparison of approaches. Statistics in Medicine, 35, 534 – 552.; Peck, C. C., Barr, W. H., Benet, L. Z., et al. ( 1992 ) Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Journal of Pharmaceutical Sciences, 81, 605 – 610.; Royston, P. ( 2014 ) A smooth covariate rank transformation for use in regression models with a sigmoid dose–response function. Stata Journal, 14, 329 – 341.; Di Veroli, G. Y., Fornari, C., Goldlust, I., Mills, G., Koh, S. B., Bramhall, J. L., Richards, F. M. & Jodrell, D. I. ( 2015 ) An automated fitting procedure and software for dose–response curves with multiphasic features. Scientific reports, 5, 1 – 11.; Yarnold, P. R. & Soltysik, R. C. ( 2005 ) Optimal Data Analysis: A Guidebook with Software for Windows. Washington, DC: APA Books.; Yarnold, P. R. & Soltysik, R. C. ( 2016 ) Maximizing Predictive Accuracy. Chicago, IL: ODA Books. doi:10.13140/RG.2.1.1368.3286; Linden, A. & Yarnold, P. R. ( 2016 ) Using machine learning to assess covariate balance in matching studies. Journal of Evaluation in Clinical Practice, 22, 844 – 850.; Lang, C. C., Stein, C. M., Brown, R. M., Deegan, R., Nelson, R., He, H. B., Wood, M. & Wood, A. J. ( 1995 ) Attenuation of isoproterenol‐mediated vasodilatation in blacks. New England Journal of Medicine, 333, 155 – 160.; Dupont, W. D. ( 2009 ) Statistical Modeling for Biomedical Researchers. Cambridge, U.K: Cambridge University Press.; Yarnold, P. R. & Soltysik, R. C. ( 1991 ) Theoretical distributions of optima for univariate discrimination of random data. Decision Sciences, 22, 739 – 752.; Carmony, L., Yarnold, P. R. & Naeymi‐Rad, F. ( 1997 ) One‐tailed Type I error rates for balanced two‐category UniODA with a random ordered attribute. Annals of Operations Research, 74, 223 – 238.; Linden, A. & Yarnold, P.R. ( 2016 ) Using machine learning to identify structural breaks in single‐group interrupted time series designs. Journal of Evaluation in Clinical Practice, 22, 851 – 855.; Linden, A., Adams, J. & Roberts, N. ( 2003 ) Evaluating disease management program effectiveness: an introduction to time series analysis. Disease Management, 6, 243 – 255.; Feinstein, A. R. ( 1988 ) Statistical significance versus clinical importance. Quality of Life and Cardiovascular Care, 4, 99 – 102.; Kraemer, H. C. ( 1992 ) Evaluating Medical Tests. Newbury Park, CA: Sage.; Baus, J. W. & Gose, E. E. ( 1995 ) Leukocyte pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC‐2, 513 – 526.

11
Book

Contributors: School of Information, University of Michigan, USE Lab, Digital Media Commons, University of Michigan, Center for Technology in Learning, SRI International , Menlo Park , CA , USA, Institute for Educational Initiatives, University of Notre Dame , Notre Dame , IN , USA, Ann Arbor

File Description: application/pdf

Relation: In (J. A. Larusson & B. White, Eds.) Learning Analytics: From Research to Practice (pp 103-119). New York: Springer.; USE Lab; Student Explorer; https://hdl.handle.net/2027.42/107974; Learning Analytics: From Research to Practice

12
Academic Journal

Contributors: CSE Department, University of Michigan, Ann Arbor, MI 48109, USA

File Description: 114193 bytes; 3118 bytes; application/pdf; text/plain

Relation: Hardwick, Janis; Stout, Quentin F. (2009). "Algorithms for response adaptive sampling designs." Wiley Interdisciplinary Reviews: Computational Statistics 1(1): 118-122.; https://hdl.handle.net/2027.42/64301; Wiley Interdisciplinary Reviews: Computational Statistics

13
Dissertation/ Thesis

Authors: Zhao, Yan

Contributors: Liu, Henry, Peng, Huei, Yin, Yafeng, Masoud, Neda, Orosz, Gabor

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/155289; orcid:0000-0002-5246-059X; Zhao, Yan; 0000-0002-5246-059X

14
Academic Journal

Contributors: Department of Mechanical Engineering, University of Michigan – Dearborn, Dearborn, MI, 48128, U.S.A., Department of Industrial and Manufacturing Systems Engineering, University of Michigan – Dearborn, USA, Dearborn, Ann Arbor

File Description: 392390 bytes; 3115 bytes; application/pdf; text/plain

Relation: Sadoyan, Hovhannes; Zakarian, Armen; Mohanty, Pravansu; (2006). "Data mining algorithm for manufacturing process control." The International Journal of Advanced Manufacturing Technology 28 (3-4): 342-350.; https://hdl.handle.net/2027.42/45889; http://dx.doi.org/10.1007/s00170-004-2367-1; The International Journal of Advanced Manufacturing Technology

15
Academic Journal

Contributors: Department of EECS, University of Michigan, Ann Arbor, MI, USA, Ecole Supérieure d'Electricité, Gif-sur-Yvette, France, Ann Arbor

File Description: 830581 bytes; 3115 bytes; application/pdf; text/plain

Relation: Hero, Alfred O.; Fleury, Gilles; (2004). "Pareto-Optimal Methods for Gene Ranking." The Journal of VLSI Signal Processing 38(3): 259-275.; https://hdl.handle.net/2027.42/41339; http://dx.doi.org/10.1023/B:VLSI.0000042491.03225.cf; The Journal of VLSI Signal Processing

16
Dissertation/ Thesis
17
Dissertation/ Thesis
18
Dissertation/ Thesis

Authors: Binzagr, Faisal

Contributors: Medjahed, Brahim, Guo, Jinhua, Malik, Hafiz

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/138104; orcid:0000-0001-9560-092X; BINZAGR, FAISAL; 0000-0001-9560-092X

19
Dissertation/ Thesis

Contributors: Dehzangi, Omid, Malik, Hafiz, Maxim, Bruce, Medjahed, Brahim, Ma, Di

File Description: application/pdf

Relation: https://hdl.handle.net/2027.42/136624; 8143640; orcid:0000-0002-5000-3352; Melville, Alexander; 0000-0002-5000-3352