Showing 1 - 13 results of 13 for search 'Ammonium' Narrow Search
3
Academic Journal

Superior Title: Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 Núm. 3 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 No. 3 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; v. 69 n. 3 (2022) ; 2357-3813 ; 0120-2952

File Description: application/pdf

Relation: https://revistas.unal.edu.co/index.php/remevez/article/view/99968/85232; Aboal M, Alvares–Troncoso R, Corrochano–Codorníu A. 2012. ID-impuesto. Catálogo y claves de identificación de organismos fitoplanctónicos como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, España. Arcos–Pulido MDP, Gómez Prieto AC. 2006. Microalgas perifíticas como indicadoras del estado de las aguas de un humedal urbano: Jaboque, Bogotá DC, Colombia. Nova. 5(6):60-79. APHA. 1998. Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC. APHA. 2017. Standard methods for the examination of water and wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver. Atencio GV. 2001. Producción de alevinos de especies nativas. Revista MVZ Córdoba. 6(1): 9-14. https://doi.org/10.21897/rmvz.1060 Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025 Avnimelech Y. 2009. Biofloc Technology – A practical guide book. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y. 2015. Biofloc technology: a practical guide book. 3rd edition. Baton Rouge, Louisiana, USA: World Aquaculture Society. Ayazo–Genes J, Pertuz–Buelvas V, Jiménez–Velásquez C, Espinosa–Araujo J, Atencio–García V, Prieto–Guevara M. 2019. Comunidades planctónicas y bacterianas asociadas al cultivo de bocachico Prochilodus magdalenae con tecnología biofloc. Rev MVZ Córdoba. 24(2): 7209-7217. https://doi.org/10.21897/rmvz.1648 Azim ME, Little DC, Bron JE. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour Technol. 99(9):3590-3599. https://doi.org/10.1016/j.biortech.2007.07.063 Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int Biodeterior Biodegradation. 102:100-106. https://doi.org/10.1016/j.ibiod.2015.04.001 Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR. 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture. 484:259-267. https://doi.org/10.1016/j.aquaculture.2017.11.036 Barbieri E, Vigliar Bondioli AC. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquac Res. 46(3):565-571. https://doi.org/10.1111/are.12203 Betancur Gonzáles EM, David Ruales CA, Gutiérrez LA. 2016. Diversidad del perifiton presente en un sistema de producción de tilapia en biofloc. Rev Lasallista Investig. 13(2): 163-177. https://doi.org/10.22507/rli.v13n2a15 Boyd CE. 2015. Water quality: an introduc¬tion. Springer Publisher. 330 p. https://doi.org/10.1007/978-3-319-17446-4 Brú–Cordero SB, Pertuz–Buelvas V, Ayazo–Genes J, Atencio–García VJ, Pardo–Carrasco S. 2017. Bicultivo de cachama blanca Piaractus brachypomus y tilapia nilótica Oreochromis niloticus en biofloc alimentadas con dietas de origen vegetal. Rev Med Vet Zoot. 64(1):44- 60. https://doi.org/10.15446/rfmvz.v64n1.65824 Castro–Mejía G, De Lara AR, Monroy–Dosta MC, Maya–Gutiérrez S, Castro–Mejía J, Jiménez– Pacheco F. 2017. Presencia y abundancia de fitoplancton y zooplancton en un sistema de producción de Biofloc utilizando dos aportes de carbono: 1) Melaza y 2) Melaza + pulido de arroz cultivando al pez Oreochromis niloticus. Revista Digital del Departamento El Hombre y su Ambiente. 1(13):33-42. Collazos–Lasso LF, Arias–Castellanos JA. 2015. Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia. 19(1):77-86. https://doi.org/10.22579/20112629.341 Crab R, Chielens B, Wille M, Bossier P, Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res. 41:559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x Crab R, Defoirdt T, Bossier P, Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. 356-357:351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046 David–Ruales C, Machado–Fracalossi D, Vásquez– Torres W. 2018. Desarrollo temprano en larvas de peces. clave para el inicio de la alimentación exógena. Rev Lasallista Investig. 15(1):180-194. https://doi.org/10.22507/rli.v15n1a10 De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture. 277(3-4):125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019 Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257(1-4):346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019 Ekasari J, Hanif Azhar M, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 41(2):332-339. https://doi.org/10.1016/j.fsi.2014.09.004 Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin M, Bossier P, De Schryver P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 441:72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019 Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Zairin M. 2016. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquacul¬ture. 464:349-356. https://doi.org/10.1016/j.aquaculture.2016.07.013 Elmoor–Loureiro LMA. 1997. Manual de identificação de cladóceros límnicos do Brasil. Proyecto: Biodiversidade de Cladócera no Brasil. Editorial: Editora Universa – UCB. 156 p. Emerenciano MGC, Martínez–Córdova LR, Martínez-Porchas M, Miranda–Baeza A. 2017. Biofloc technology (BFT): A tool for water Quality management in aquaculture. In: Tutu H. (Ed.), Water Quality. InTechOpen, London, UK, pp. 91-109. https://doi.org/10.5772/66416 Emerson K, Russo RC, Lund RE, Thurston RV. 1975. Aqueous ammonia equilibrium calcu¬lations: effect of pH and temperature. J Fish Res Board Can. 32:2379-2383. https://doi.org/10.1139/f75-274 Fauji H, Budiardi T, Ekasari J. 2018. Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquac Res. 49(3):1339-1346. https://doi.org/10.1111/are.13595 Fontaneto D, De Smet WH. 2014. Manual de Zoología, Gastrotricha, Cicloneuralia y Gnathifera. Vol 3, Gastrotricha y Gnathifera Cap: Rotifera, pp. 217-300. García–Ríos L, Miranda–Baeza A, Coelho–Emerenciano MG, Huerta–Rábago JA, Osuna–Amarillas P. 2019. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture. 502:26-31. https://doi.org/10.1016/j.aquaculture.2018.11.05 Glime JM. 2017. Invertebrates: Rotifer Taxa – Monogononta. Chap. 4-7a. In: Glime JM (Ed.), Bryophyte Ecology. Vol 2: 4-7a-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponible en: http://digitalcommons.mtu.edu/bryophyte-ecology2/ Gomes Vilani F, Schveitzer R, da Fonseca Arantes R, do Nascimento Vieira F, Manoel do Espírito Santo C, Quadros Seiffert W. 2016. Strategies for water preparation in a biofloc system: Effects of carbon source and fertilization dose on water quality and shrimp performance. Aquac Eng. 74:70-75. https://doi.org/10.1016/j.aquaeng.2016.06.002 Hargreaves JA. 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center (SRAC). Publication No. 4503. 12 p. Hernández ER, Rodríguez MA, Ruíz MO, Monroy DMC. 2017. Ecological succession of plankton in a biofloc system with molasses as carbon source. Sci J Biol Sci. 6(7):222-228. https://doi.org/10.14196/sjbs.v6i7.2456 Jiménez–Ojeda YK, Collazos–Lasso LF, Arias– Castellanos JA. 2018. Dynamics and use of nitrogen in Biofloc Technology – BFT. AACL Bioflux. 11(4):1107-1129. Korovchinsky NM. 1992. Sididae and holopediidae: (Crustacea: Daphniiformes). In: Bayly IAE. (Ed.), Guides to the identification of the macroinvertebrates of the continental waters of the world. SPB Academic Pub., Hague, Netherlands. 82 p. Kubitza F. 2017. A relação entre pH, gás carbônico, alcalinidade e dureza sua influência no desempenho e saúde dos peixes e camarões. Rev Panorama de AQÜICULTURA. Disponible en: https://panoramadaaquicultura.com.br/a-agua-na-aquicultura-parte-2/ Li J, Liu G, Li C, Deng Y, Tadda MA, Lan L, Liu D. 2018. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 495:919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078 Lima PCM. 2017. Efeito da adição de Chlorella Vulgaris e melaço na qualidade da água e cresci¬mento de alevinos de tilápia do nilo (Oreochromis niloticus) em sistemas de bioflocs com baixa salinidade. Dissertação de mestrado. Programa de Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Recife. 62 p. Machado–Allison A. 1992. Larval Ecology of Fish of the Orinoco Basin. W. C. Hamlett (ed.). Reproductive Biology of South American Vertebrates. Springer-Verlag New York. Inc. pp. 45-48. Manrique L, Peláez M. 2013. Manual de análisis de calidad de aguas en ecosistemas acuáticos andino-amazónicos: análisis físicos y químicos. Vicerrectoría de investigaciones, Universidad de la Amazonia, Florencia, Colombia. 179 p. Martins GB, Tarouco F, Rosa CE, Robaldo RB. 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (O.niloticus). Aquaculture. 468:10-17. https://doi.org/10.1016/j.aquaculture.2016.09.046 Martins MA, Poli MA, Legarda EC, Pinheiro IC, Carneiro RFS, Pereira SA, do Nascimento Vieira F. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture. pp. 734517. https://doi.org/10.1016/j.aquaculture.2019.734517 Miranda–Baeza A, Nolasco–López M, Rivas–Vega ME, Huerta–Rábago KJA, Martínez–Córdova LR, Martínez–Porchas M. 2019. Short-term effect of the inoculation of probiotics in mature bioflocs: Water quality parameters and abun¬dance of heterotrophic and ammonia-oxidizing bacteria. Aquac Res. 51(2):255-264. https://doi.org/10.1111/are.14371 Monroy–Dosta MC, De Lara–Andrade R, Castro– Mejía J, Castro–Mejía G, Coelho-Emerenciano MG. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Rev Biol Mar Ocea¬nogr. 48(3):511-520. https://doi.org/10.4067/S0718-19572013000300009 Moreno JR, Medina CD, Albarracín VH. 2012. Aspectos ecológicos y metodológicos del muestreo, identificación y cuantificación de cianobacterias y microalgas eucariotas. Reduca (Biología). 5(5):110-125. Poli MA, Schveitzer R, De Oliveira Nuñer AP. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquac Eng. 66:17-21. https://doi.org/10.1016/j.aquaeng.2015.01.004 Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture. 310(1-2):130-138. https://doi.org/10.1016/j.aquaculture.2010.10.019 Ray AJ, Lotz JM. 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquac Eng. 63:54-61. https://doi.org/10.1016/j.aquaeng.2014.10.001 Rieradevall SM. 1987. Atlas de los Microorganismos de Agua dulce. La vida es una gota de agua dulce. Barcelona: Ediciones Omega, S.A. pp. 275-291. Rogers DC, Thorp JH (Eds.). 2019. Thorp and Covich’s Freshwater Invertebrates. Vol 3: Keys to Palaearctic Fauna. Amsterdam, USA. Elsevier. Stein LY, Klotz MG. 2016. The nitrogen cycle. Curr Biol. 26(3):R94–R98. https://doi.org/10.1016/j.cub.2015.12.021 Timmons MB, Ebeling JM, Wheaton FW, Sum¬merrfelt ST, Vinci BJ. 2002. Recirculating aquaculture systems. 2nd ed. New York: Cayuga Aqua Venture. 769 p. Xu WJ, Morris TC, Samocha TM. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 453:169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021 Zapata LK, Brito LO, Maciel De Lima PC, Vinatea ALA, Galvez AO, Cárdenas VJM. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Bol Inst Pesca. 43(3):399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399; https://revistas.unal.edu.co/index.php/remevez/article/view/99968

6
Academic Journal

Superior Title: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 Núm. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 48 n. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 No. 3 (2019) ; 1909-6356 ; 0034-7418

File Description: application/pdf

Relation: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84990/74379; Z. Wei, X. Wei, Xiuhong, Z. Wang, J. Liu, Ionic liquid crystals of quaternary ammonium salts with a 2-hydroxypropoxy insertion group, J. Mater. Chem., 21, 6875-6882 (2011). 2. J.I. Kadokawa, Ionic Liquids-New Aspects for the Future, InTech, 2013. 3. A. Stojanovic, C. Morgenbesser, D. Kogelnig, R. Krachler, B.K. Keppler, Ionic Liquids: Theory, Properties, New Approaches, A. Kokorin (Ed.), Intech Open, 2011. 4. R.T. Carson, E. Larson, S.B. Levy, B.M. Marshall, A.E. Aiello, Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community, J. Antimicrob. Chemother., 62, 1160-1162 (2008). 5. H. Kleszczyńska, S. Matyjasik, J. Sarapuk, D. Grobelny, S. Witek, Interaction of some quaternary ammonium salts with red cells and planar lipid membranes, Studia Biophys., 84, 173-178 (1981). 6. B. Dmochowska, K. Sikora, A. Woziwodzka, J. Piosik, B. Podgórska, Mutagenic activity of quaternary ammonium salt derivatives of carbohydrates, Beilstein J. Org. Chem., 12, 1434-1439 (2016). 7. S.P.V. Vladimi, E. Yanenko, I. Krossing, R. Kalb, Thermochemistry of ammonium based ionic liquids: Tetra-alkyl ammonium nitrates. Experiments and computations, J. Chem. Thermodyn., 51, 107-113 (2012). 8. E.R. Nightingale Jr., Viscosity of aqueous solutions. III. Tetramethylammonium bromide and the role of the tetraalkylammonium ions, J. Phys. Chem., 66, 894-897 (1962). 9. S. Lindenbaum, G.E. Boyd, Osmotic and activity coefficients for the symmetrical tetraalkylammonium halides in aqueous solution at 25°C, J. Phys. Chem., 68, 911-917 (1964). 10. B.J. Levien, Some physical properties of aqueous solutions of tetramethylammonium bromide and tetramethylammonium iodide, Aust. J. Chem., 18, 1161-1170 (1965). 11. H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure, Disc. Faraday Soc., 24, 133-140 (1957). 12. H. Ruterjans, F. Schreiner, U. Sage, T. Ackermann, Apparent molal heat capacities of aqueous solutions of alkali halides and alkylammonium salts, J. Phys. Chem., 73, 986-994 (1969). 13. A.K. Covington, T. Dickinson, Physical chemistry of organic solvent systems, Plenum, New York, 1973. 14. H. Hooshyar, B. Khezri, Volumetric properties of tetra-n-butyl ammonium bromide in aqueous solutions of magnesium sulphate in the temperature range 298.15 to 318.15K and under the atmospheric pressure, Phys. Chem. Liq., 54, 663-679 (2016). 15. Z.B. Zhou, H. Matsumoto, K. Tatsumi, Low‐melting, low‐viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyl trifluoroborates, Chem., Eur. J., 11, 752-766 (2005). 16. J. Sun, M. Forsyth, D.R. MacFarlane, Room-temperature molten salts based on the quaternary ammonium ion, J. Phys. Chem. B, 102, 8858-8864 (1998). 17. D.Z. Xu, Y. Liu, S. Shi, Y. Wang, Chiral quaternary alkylammonium ionic liquid [Pro-dabco] [BF4]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions, Tetrahedron: Asymmetry, 21, 2530-2534 (2010). 18. S. Han, J. Li, S. Zhu, R. Chen, Y. Wu, X. Zhang, Z. Yu, Potential application of ionic liquid in wood related industries, BioResources, 4, 825-834 (2009). 19. C.P. Gerba, Quaternary ammonium biocides: efficacy in application, Appl. Environ. Microbiol., 81, 464-469 (2015). 20. D. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis, Catalysis Today, 74, 157-189 (2002). 21. G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 28, 4192-4199 (2007). 22. B.C. Ranu, A. Das, S. Samanta, Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free conditions, Tetrahedron, 59, 2417-2421 (2003). 23. S. Mallakpour, A. Zadehnazari, Synthesis and characterization of novel heat stable and processable optically active poly(amide–imide) nanostructures bearing hydroxyl pendant group in an ionic green medium, J. Polym. Environ., 21, 132-140 (2013). 24. B. Guo, E. Duan, A. Ren, Y. Wang, H. Liu, Solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids, J. Chem. Eng. Data, 55, 1398-1401 (2010). 25. T. Floris, P. Kluson, L. Bartek, H. Pelantova, Quaternary ammonium salts ionic liquids for immobilization of chiral Ru-BINAP complexes in asymmetric hydrogenation of β-ketoesters, Appl. Catalysis, 366, 160-165 (2009). 26. K. Kim, C. Lang, R. Moulton, P.A. Kohl, Electrochemical investigation of quaternary ammonium/aluminum chloride ionic liquids, J. Electrochem. Soc., 151, A1168-A1172 (2004). 27. M.I. Levinson, Rinse-added fabric softener technology at the close of the twentieth century, J. Surfactants Deterg., 2, 223-235(1999). 28. S. Sowmiah, V. Srinivasadesikan, M.C. Tseng, Y.H. Chu, On the chemical stabilities of ionic liquids, Molecules, 14, 3780-3813 (2009). 29. J.M. Khurana, S. Kumar, Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions, Tetrahedron Lett., 50, 4125-4127 (2009). 30. L.W. Xu, J.W. Li, S.L. Zhou, C.G. Xia, A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α,β-ethylenic compounds with amines in water, New J. Chem., 28, 183-184 (2004). 31. A.U. Mandakmare, M.L. Narwade, D.T. Tayade, A.B. Naik, Intermolecular interactions in dioxane-water solutions of substituted coumarins according to ultrasonic data, Russ. J. Phys. Chem., 88, 2334-2338 (2014). 32. O. Mokate, W.A.A. Ddamba, Volumetric properties of (difurylmethane+alkan-1-ol) binary mixtures at 298.15 K, J. Soln. Chem., 35, 1493-1503 (2006). 33. S. Canzonieri, A. Camacho, R. Tabarsrozzi, M. Postigo, L. Mussari, Volumetric and viscous behaviour of the binary and ternary systems formed by methyl acetate, ethyl acetate and 1-propanol at 283.15, 298.15 and 313.15 K, Phys. Chem. Liq., 50, 530-545 (2012). 34. B. Goddu, M.M. Tadavarthi, V.K. Tadekoru, J.N. Guntupalli, Density, speed of sound, and dynamic viscosity of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/1-butyl-3-methylimidazolium hexafluorophosphate and N-methylaniline binary systems from T = 298.15 to 323.15 K at 0.1 MPa, J. Chem. Eng. Data, 64, 2303-2319(2019). 35. D.S. Gill, D.S. Rana, S.P. Jauhar, Compressibility studies of some copper(I), silver(I), and tetrabutylammonium salts in acetonitrile + adiponitrile binary mixtures, J. Chem. Eng. Data, 55, 2066-2071 (2010). 36. F. Hirata, K. Arakawa, Ultrasonic study of solute-solvent interaction in aqueous solutions of tetraalkylammonium salts, Bull. Chem. Soc. Jpn, 45, 2715-2719 (1972). 37. J.A. Riddick, W.B. Bunger, T. Sakano, Organic Solvents: Physical Properties and methods of purification, 4thEd., Techniques of Chemistry, II, A Wiley-Interscience Publication, John Wiley, New York, 1986. 38. S. Baluja, R.M. Talaviya, Density, sound speed, and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures, J. Chem. Eng. Data, 61, 1431-1440 (2016). 39. B. Hemalatha, P. Vasantharani, N. Senthikumar, Solute-solvent interactions of TBAB in DMF-water system at different temperatures, Int. J. Adv. Eng. Tech., 6, 795-803 (2013). 40. A. Toumi, N.E. Hammami, M. Bouanz, Acoustic and thermodynamic study of binary mixture cyclohexane-methanol using ultrasonic interferometer at different temperatures, Ind. J. Pure Appl. Phys., 56, 461-467 (2018). 41. S.S. Kulkarni, U.V. Khadke, Effect of solvents on the ultrasonic velocity and acoustic parameters of polyvinylidene fluoride solutions, Ind. J. Mat. Sci., 2016, ID 9582582 p. 1-6 (2016). 42. S.G. Rao, T.M. Mohan, T.V. Krishna, B.S. Rao, Volumetric properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 2-pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure, J. Chem. Thermodyn., 94, 127-137 (2016). 43. M.S. Raman, M. Kesavan, K. Senthilkumar, V. Ponnuswamy,Ultrasonic, DFT and FT-IR studies on hydrogen bonding interactions in aqueous solutions of diethylene glycol, J. Mol. Liq., 202, 115-124 (2015). 44. D.R. Godhani, P.B. Dobariya, A.M. Sanghani, A.A. Jogel, J.P. Mehta, Effect of temperature and solvents on thermo-physical properties of 1,3,4-oxadiazole derivative at atmospheric pressure, J. Mol. Liq., 180, 179-186 (2013). 45. S. Ravichandran, K. Ramanathan, Ultrasonic investigations of MnSO4, NiSO4 and CuSO4 aqueous in polyvinyl alcohol solution at 303K, Rasayan J. Chem., 3, 375-384 (2010). 46. D.R. Godhani, P.B. Dobariya, A.M. Sanghani, Effect of temperature and solvents on ultrasonic velocity and thermodynamic parameters of 1,3,4-oxadiazole derivative solutions, J. Mol. Liq., 168, 28-35 (2012). 47. V. Kannapn, R.J. Santhi, Ultrasonic study of induced dipole-dipole interactions in binary liquid mixtures, Ind. J. Pure Appl. Phys., 43, 750-754 (2005). 48. P. Sharma, S. Chauhan, M.S. Chauhan, V.K. Syal, Ultrasonic velocity and viscosity studies of tramacip and parvodex in binary mixtures of alcohol + water, Ind. J. Pure Appl. Phys., 46, 839-843 (2008). 49. S. Punitha, R. Uvarani, A. Panneerselvam, Acoustical and Spectroscopic studies in aqueous solutions of polymer and dextrin’s binary complex formation, Int. J. ChemTech Res., 7,629-638 (2014). 50. M. Kazafi, H.R. Ansari, Acoustical behavior of glucose. Sucrose and maltose in aqueous ammonium chloride solutions (0.5M) at different temperature, Res. Paper. Chem., 1, 1-4 (2011). 51. K.R. Devi, S. Geetha, Ultrasonic analysis of intermolecular interaction through internal pressure and free volume of aqueous fertilizer solutions, Int. J. ChemTech Res., 8, 519-526 (2015). 52. S. Punitha, R. Uvarani, A. Panneerselvam, S. Nithiyanantham, Physico-chemical studies on binary aqueous solutions of Anti-Viral Influenza drugs, Heliyon, 5, e01941 (2019). 53. B.B. Dhaduk, C. B. Patel, P. H. Parsania, Ultrasonic speed and related thermo-acoustical parameters of solutions of 1,1′-bis(3-methyl-4-ethoxyacetylphenoxy) cyclohexane at four different temperatures, J. Soln. Chem., 44,1976-1996 (2015). 54. P. S. Nikam, M. Hasan, T.B. Pawar, A.B. Sawant, Ultrasonic velocity and allied parameters of symmetrical tetraalkyl ammonium bromides in aqueous ethanol at 298.15 K, Ind. J. Pure Appl. Phys., 42,172-178 (2004). 55. M.R. Sanaria, P.H. Parsania, Studies on sound velocity and acoustical parameters of epoxy resins based on bisphenol-C, J. Pure Appl. Ultrason., 22, 54-59 (2000). 56. S. Khan, R. Sharma, A.K. Sharma, Acoustic studies and other acoustic parameters of Cu (II) soap derived from non-edible neem oil (AzadirectaIndica), in non-aqueous media at 298.15 K, Acta Acustica, 104, 277-283 (2018). 57. D.R. Bharja, Y.V. Patel, P.H. Parsania, Ultrasonic study of poly (R, R', 4, 4'-cyclohexylidene diphenylene phosphorochlorid-ate)-DMF solutions at different temperatures, J. Pure Appl. Ultrason., 24, 47-53 (2002). 58. J. Krakowiak, Apparent molar volumes and compressibilities of tetrabutyl-ammonium bromide in organic solvents, J. Chem. Thermodyn., 43,882-894 (2011). 59. R. Sadeghi, R. Golabiazar, M. Zlaii, Vapor-liquid equilibria, density, speed of sound, and refractive index of sodium tungstate in water and in aqueous solutions of poly(ethyleneglycol) 6000, J. Chem. Eng. Data, 55, 125-133 (2010). 60. D.O. Mason, XXVIII. Solute molecular volumes in relation to solvation and ionization, Philosoph. Mag., 8, 218-235 (1929). 61. R. Gopal, M.A. Siddiqi, Study of ion-solvent interaction of some tetraalkylammonium and common ions in N-methylacetamide from apparent molal volume data, J. Phys. Chem., 73, 3390-3394 (1969). 62. M.T.Z. Moattar, H. Shekaari, Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T = (298.15 to 318.15) K, J. Chem. Thermodyn., 37, 1029-1035 (2005). 63. R.L. Gardas, D.H. Dagade, J.A.P. Coutinho, K.J. Patil, Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl], J. Phys. Chem. B, 112, 3380-3389 (2008). 64. P.J. Victor, B. Das, D.K. Hazra, Ultrasonic velocities and isentropic compressibilities of electrolytes in 2-methoxyethanol from 15 to 35°C, J. Soln. Chem., 30, 435-442 (2001). 65. D. Das, B. Das, D.K. Hazra, Ultrasonic velocities and isentropic compressibilities of some symmetrical tetraalkylammonium salts in N,N-dimethylacetamide at 298.15 K, J. Mol. Liq., 111, 15-18 (2004). 66. J. Krakowiak, W. Grzybkowski, Apparent molar volume and compressibility of tetrabutylphosphonium bromide in various solvents, J. Chem. Eng. Data., 55, 2624-2629 (2010). 67. F.T. Guker, The apparent molal heat capacity, volume, and compressibility of electrolytes, Chem. Rev., 13,111-130 (1933). 68. N. Saha, B. Das, Apparent molar volumes of some symmetrical tetraalkylammonium bromides in acetonitrile at (298.15, 308.15, and 318.15) K, J. Chem. Eng. Data, 42, 227-229 (1997). 69. P.S. Naidu, K.R. Prasad, Ultrasonic velocity and allied parameters of cypermethrin with xylene and ethanol, Ind. J. Pure Appl. Phys., 42, 512-517 (2004). 70. S.K. Sharma, G. Singh, H. Kumar, R. Kataria, Thermodynamic study of N-acetyl glycine in aqueous tetraethylammonium iodide solutions in the temperature interval (288.15 to 308.15) K: Volumetric and acoustic study, J. Chem. Thermodyn., 94, 74-84 (2016). 71. Y. Zhao, H. Liu, Z. Min, J. Wang, Volumetric and viscosity properties for tetraalkylammonium bromides and some ions in PC+THF mixtures at 298.15 K, J. Mol. Liq., 223, 1172-1177 (2016). 72. H. Donald, B. Jenkins, Y. Marcus, Viscosity B-coefficients of ions in solution, Chem. Rev., 95, 2695-2724 (1995). 73. G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc., 51, 2950-2964 (1929). 74. R.S. Patil, V.R. Shaikh, P.D. Patil, A.U. Borse, K.J. Patil, The viscosity B and D coefficient (Jones–Dole equation) studies in aqueous solutions of alkyl trimethylammonium bromides at 298.15 K, J. Mol. Liq., 200, 416-424 (2014). 75. H. Shekaari, M.T.Z. Moattar, S.N. Mirheydari, Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = (288.15 to 318.15) K, J. Chem. Eng. Data, 60, 1572-1583 (2015). 76. E. Tyunina, V. Afanas’ev, M. Chekunova, Viscosity and density of solutions of tetra ethyl ammonium tetrafluoroborate in propylene carbonate at different temperatures, J. Soln. Chem., 41, 307-317(2012). 77. T. Zhao, Q. Xu, J. Xiao, X. Wei, Excess properties and spectroscopic studies for binary system of polyethylene glycol 200 (1) + dimethyl sulfoxide (2) at T = (298.15 to 318.15) K, J. Chem. Eng. Data, 60, 2135-2145 (2015). 78. T. Ramanujappa, J.A. Bhavani, E.R. Gopal, N.M. Murthi, Excess sound velocity and excess specific acoustic impedance of (2,2,2-trifluoroethan-1-01 +benzene), (benzene+dimethylsulphoxide) and (2,2,2-trifluoroethan-1-01+dimethyl sulphoxide) at 298.15 K, Ind. J. Pure Appl. Phys., 38, 301-305 (2000). 79. A. Ali, S. Hyder, A. K. Nain, Intermolecular interactions in ternary liquid mixtures by ultrasonic velocity measurements, Ind. J. Phys., 74B, 63-67 (2000). 80. A.B. Naik, Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures, Ind. J. Pure Appl. Phys., 53, 27-34 (2015). 81. N.J. Madhuri, P.S. Naidu, J. Glory. K.R. Prasad, Ultrasonic investigations of molecular interaction in binary mixtures of benzyl benzoate with acetonitrile and benzonitrile, E-J. Chem., 8, 457-469 (2011). 82. U. Domanska, M. Królikowska, Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature, J. Soln. Chem., 41, 1422-1445 (2012). 83. M.G. Landge, S.S. Badade, B.V. Kendre, Density, ultrasonic velocity and viscosity measurements of glucose-alcohol-water mixtures at various temperatures, Int. J. Res. Chem. Environ., 3, 348-352 (2013). 84. S.S. Bittencourt, H.E. Hoga, R.B. Torres, J.V.H. Angelo, Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15–313.15) K, J. Chem. Thermodyn., 105, 238-252 (2017). 85. M.B. Gramajo de Doz, A.M. Cases, C.M. Bonatti, H.N. Sólimo, Influence of temperature on the (liquid + liquid) equilibria of {3-methyl pentane + cyclopentane + methanol} ternary system at T = (293.15, 297.15, and 299.15) K, J. Chem. Thermodyn., 41, 1279-1283 (2009). 86. M. Hasan, A.P. Hiray, U.B. Kadam, D. F. Shirude, K.J. Kurhe, A.B. Sawant, Densities, viscosities, speeds of sound, FT-IR and 1H-NMR studies of binary mixtures of n-butyl acetate with ethanol, propan-1-ol, butan-1-ol and pentan-1-ol at 298.15, 303.15, 308.15 and 313.15 K, J. Soln. Chem., 40, 415-429 (2011). 87. A.K. Nain, Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures, Fluid Phase Equilib., 259, 218-227 (2007). 88. Y. Xu, J. Yao, C. Wang, H. Li, Density, viscosity, and refractive index properties for the binary mixtures of n-butylammonium acetate ionic liquid + alkanols at several temperatures, J. Chem. Eng. Data, 57, 298-308 (2012). 89. U. Domanska, M. Zawadzki, A. Effect Królikowska, Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinoliniumbis{(trifluoromethyl)sulfonyl}imide with alcohols,J. Chem. Thermodyn., 48, 101-111 (2012).; https://revistas.unal.edu.co/index.php/rccquifa/article/view/84990

7
Academic Journal

Superior Title: Revista de la Facultad de Ciencias; Vol. 7 No. 1 (2018); 124-142 ; Revista de la Facultad de Ciencias; Vol. 7 Núm. 1 (2018); 124-142 ; 2357-5549 ; 0121-747X

File Description: application/pdf

Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/68240/64644; Algoe, C.; Stoops, G.; Vandenberghe, R. & Van Ranst, E. (2012). Selective dissolution of Fe-Ti oxides– Extractable iron as a criterion for Andic properties revisited. Catena, 92, 49-54.; Arbestain, M. C.; Barreal, M. E. & Macías, F. (2001). Sulfate sorption in nonvolcanic Andisols and Andic soils from Galicia, NW Spain. Geoderma, 104(1), 75-93.; Asano, M. & Wagai, R. (2014). Evidence of aggregate hierarchy at micro-to submicron scales in an allophanic Andisol. Geoderma, 216, 62-74.; Buurman, P.; García, E.; Martínez, A. & Van Doesburg, J. D. J. 2004. Stratification of parent material in European volcanic and related soils studied by laser-difraction grain-sizing and chemical analysis. Catena, 56(1), 127-144.; Caballero, B. & Jaramillo, D. F. J. (2007), Humedad crítica y repelencia al agua en Andisoles bajo cobertura de cupressus lusitanica y quercus humboldtii en la cuenca de la quebrada Piedras Blancas (Medellín, Colombia). Revista Facultad Nacional de Agronomía Medellín, 60(2), 4001-4024.; Dahlgren, R.; Shoji, S. & Nanzyo, M. (1993). Mineralogical characteristics of volcanic ash soils. Developments in Soil Science, 21, 101-143.; Dai, Q.; Ae, N.; Suzuki, T.; Rajkumar, M.; Fukunaga, S. & Fujitake, N. (2011). Assessment of potentially reactive pools of aluminum in Andisols using a five-step sequential extraction procedure. Soil Science and Plant Nutrition, 57(4), 500-507.; De los Ríos, J. C.; Gallego, A. F.; Vélez, L. D.; Agudelo, J. I.; Toro, L. J.; Lema, A. J. & Acevedo, L. I.(2004). Caracterización y evaluación de agroecosistemas a escala predial. Un estudio de caso: Centro Agropecuario Paysandú (Medellín, Colombia). Revista Facultad Nacional de Agronomía Medellín, 57(2), 2467-2489.; Ferro, V.; Nóvoa, J. C.; Costa, M.; Klaminder, J. & Martínez, A. (2014). Metal and organic matter immobilization in temperate podzols: A high resolution study. Geoderma, 217, 225-234.; Flórez, M. T & Parra, L. N. (2001). Génesis de suelos y paleosuelos ándicos a partir del estudio de pedocomponentes (parte II). Revista Facultad de Ingeniería Universidad de Antioquía, (22), 50-66.; Flórez, M. T.; Zapata, R.; Malagon, D. & Madriñan, R. (2004). Meteorización experimental de los fragmentos de matriz y los vidrios volcánicos. Tesis Ph D. en Suelos y Aguas. Universidad Nacional de Colombia sede Palmira. 210 p.; Flórez, M.T., Parra, L.N & Jaramillo, D.F. (2006). Los fitolitos como una herramienta pedogenética en un Andisol de la cuenca de Piedras Blancas, Colombia. Suelos Ecuatoriales, 39(1), 88-94.; García, E.; Nóvoa, J.; Pontevedra, X.; Martínez, A.; Buurman, P. (2004). Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena, 56(1), 155-183.; Hu, P.; Liu, Q.; Torrent, J.; Barrón, V. & Jin, C. (2013). Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogénesis. Earth and Planetary Science Letters, 369, 271-283.; Instituto Geográfico Agustín Codazzi, IGAC. (2006). Métodos analíticos del laboratorio de suelos (6a ed.). Bogotá, 648 p.; Jan, J.; Borovec, J.; Kopa, J. & Hejzlar, J. (2013). What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments?. Water Research, (47), 547-557.; Jansen, B.; Tonneijck F. H. & Verstraten, J. M. (2011). Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils. Pedosphere, 21(5), 549-565.; Jaramillo, D. F.; Flórez, M. T. & Parra, L. N. (2006). Caracterización de un Andisol de la cuenca de la quebrada Piedras Blancas, Oriente Antioqueño, Colombia. Suelos Ecuatoriales, 36(1), 61-71.; Kleber, M.; Mikutta, C. & Jahn, R. (2004). Andosols in Germany–pedogenesis and properties. Catena, 56(1), 67-83.; Levard, C.; Doelsch, E.; Basile-Doelsch, I.; Abidin, Z.; Miche, H.; Masion, A.; Rose, J.; Borschneck, D. & Bottero, J. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite involcanic soils. Geoderma, 183, 100-108.; Malagón, D.; Pulido, C. & Llinás, R. (1991), Andisoles. Investigaciones Volumen 3 N◦ 1. Santa Fé de Bogotá D.C.: Subdirección Agrológica. IGAC, 118 p.; Mehra, O. P & Jackson, M. J. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Mineral, 7, 317-327.; Nierop, K. G. J.; Tonneijck, F. H.; Jansen, B. & Verstraten, J. M. (2007). Organic matter in volcanic ash soils under forest and paramo along an Ecuadorian altitudinal transect. Soil Science Society of America Journal, 71(4), 1119-1127.; Nieuwenhuyse, A.; Verburg, P. & Jongmans, A. (2000). Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica. Geoderma, 98(1), 61-82.; Pansu, M. & Gautheyrou, J. (2006). Handbook of soil analysis. mineralogical, organic and inorganic methods. Berlin Heidelberg: Springer-Verlag, 993 p.; Pinheiro, J.; Tejedor, M. & Rodriguez, A. (2004). Genesis of placic horizons in Andisols from Terceira Island Azores Portugal. Catena, 56(1), 85-94.; Regelink, I.; Liping, W.; Koopmans, G. & Van Riemsdijk, W. (2013). Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts. Geoderma, 202, 134-141.; Salazar, S.; González, L. H.; Arias, L. A. (2008). Litoestratigrafía y pedoestratigrafía de los depósitos recientes en el Altiplano de Santa Rosa de Osos (ASRO). Boletín de Ciencias de la Tierra, (23), 21-31.; Shoji, S.; Dahlgren, R. & Nanzyo, M. (1993). Genesis of volcanic ash soils. Developments in Soil Science, 21, 37-71.; Soil Survey Staff, SSS. (1999). Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys (2a ed.). Agriculture Handbook N◦ 436. Washington D.C.: Soil Survey Staff, 869 p.; Soil Survey Staff, SSS. (2014). Keys to soil taxonomy. (12th ed.). Washington D. C.: USDA, 360 p.; Takahashi, T. & Dahlgren, R. (2016). Nature, properties and function of aluminun humus complexes in volcanic soils. Geoderma, 263, 110-121.; Tonneijck, F. H.; Jansen, B.; Nierop, K. G. J.; Verstraten, J. M.; Sevink, J. & De Lange, L. (2010). Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science, 61(3, 392-405.; Wada, K. (1989). Allophane and imogolite. In Dixon. J. B. and Weed, S. B. (eds.) Minerals in Soils Environments. Madison: Soil Science Society of America, 1051-1087 p.; Zapata, R. D. (2006). Química de los procesos pedogenéticos. Medellín: Universidad Nacional de Colombia, 358 p.; https://revistas.unal.edu.co/index.php/rfc/article/view/68240

8
Academic Journal

Superior Title: DYNA; Vol. 81 Núm. 183 (2014); 115-125 ; DYNA; Vol. 81 No. 183 (2014); 115-125 ; 2346-2183 ; 0012-7353

File Description: application/pdf; text/html

Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/37441/43959; https://revistas.unal.edu.co/index.php/dyna/article/view/37441/45790; Duttine, A. and Hottentot, E., Landmines and explosive remnants of war: a health threat not to be ignored. Bulletin of the World Health Organization, 91, 160-160A, 2013.; Efe, A., Colombia, segundo país con mayor número de víctimas de minas. Periódico El País, Sección Judicial, 2011.; Duque, J.E., Informe de víctimas de minas antipersonal 1990 - Abril 2011. Medellín, Antioquia, Gobernación de Antioquia, 2011.; Parra-Gallego, P.E., IEDs : A major threat for a struggling society. The Journal of ERW and Mine Action, 13, pp. 1-5, 2009.; Pino, Y.A., Determinación de técnicas de detección de explosivos óptimas para el departamento de Antioquia [Undergraduate Thesis]. Medellín: Universidad Nacional de Colombia, 2009.; Hendrickx, J.M.H., Molina, A., Diaz, D., Grasmueck, M., Moreno, H.A. and Hernandez, R.D., Humanitarian IED clearance in Colombia. Proceedings of SPIE, 6953, pp. 69530C-1-69530C-9, 2008.; Phelan, J.M. and Webb, S.W., Mine Detection Dogs: Training, operations and odor detection, In: Odor detection : the theory and the practice, Geneva Centre for Humanitarian Demining, pp. 209-285, 2003.; Gutiérrez, J.P., Padilla, I. and Sánchez, L.D., Transport of explosive chemicals from the landmine burial in granular soils. Revista Facultad de Ingenierías Universidad de Antioquia, 56, pp. 20-31, 2010.; Göth, A., Mclean, I.G. and Trevelyan, J., How do dogs detect landmines?, In: Odor detection : the theory and the practice, Geneva International Centre for Humanitarian Demining, pp. 195-208, 2003.; Östmark, H., Wallin, S. and Ang, H.G., Vapor Pressure of Explosives: A Critical Review. Propellants, Explosives, Pyrotechnics, 37, pp. 12-23, 2012.; Sargisson, R.J., Mclean, I.G., Brown, J. and Bach, H., Environmental determinants of landmine detection by dogs : findings from a large-scale study in Afghanistan. The Journal of ERW and Mine Action, 16, pp. 74-81, 2012.; Williams, A., The anomalies, perceptions and contradictions that exist in the use of dogs in demining. International Symposium on Humanitarian Demining, Šibenik, Croatia, pp. 27-30, 2010.; Poling, A., Weetjens, B.J., Cox, C., Beyene, N.W. and Sully, A., Using giant African pouched rats (cricetomys gambianus) to detect landmines. The Psychological Record, 60, pp.715-728, 2010.; Mahoney, A.M., Mine detection rats : effects of repeated extinction on detection rates [PhD Thesis], Kalamazoo, Michigan, Western Michigan University, 2012.; Habib, M.K., Controlled biological and biomimetic systems for landmine detection. Biosensors & Bioelectronics, 23, pp. 1-18, 2007.; Rains, G.C., Tomberlin, J.K. and Kulasiri, D., Using insect sniffing devices for detection. Trends in Biotechnology, 26, pp. 288-294, 2008.; Mcfee, J.E., Achal, S., Faust, A.A., Puckrin, E., House, A., et al. Detection and dispersal of explosives by ants. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, Orlando, Florida, pp. 730302-1-730302-10, 2009.; Achal, S.B., Mcfee, J.E. and Howse, J., Gradual dispersal of explosives by ants and its possible implication for smart-landmine production. International Symposium of Humanitarian Demining, Šibenik, Croatia, pp. 60-65, 2010.; Yagur-Kroll, S., Lalush, C., Rosen, R., Bachar, N., Moskovitz, Y. et al. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Applied Microbiology and Biotechnology, pp. 1-11, 2013.; Cross, E. and Osborn, S., An emerging remote sensing technology and its potential impact on mine action. International Symposium on Humanitarian Demining, Šibenik, Croatia, p. pp. 66-70, 2010.; Deyholos, M., Faust, A.A, Minmin, M., Montoya, R. and Donahue, D.A., Feasibility of landmine detection using transgenic plants. Proceedings of SPIE, 6217, pp. 62172B-1-62172B-12, 2006.; Kasban, H., Zahran, O., Elaraby, S.M., El-Kordy, M. et al. A comparative study of landmine detection techniques. Sensing and Imaging: an International Journal, 11, pp. 89-112, 2010.; Ivanušić, M., Use of dog-handler teams in humanitarian demining in the republic of Croatia. International Symposium on Humanitarian Demining, Šibenik, Croatia, pp. 28-34, 2010.; Caygill, J.S., Davis, F. and Higson, S.P.J., Current trends in explosive detection techniques. Talanta, 88, pp. 14-29, 2012.; Chen, X., Guo, D., Choa, F.S., Wang, C.C., Trivedi, S. et al. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone. Applied Optics, 52, pp. 26-32, 2013.; Piorek, B.D., Lee, S.J., Moskovits, M. and Meinhart, C.D., Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives. Analytical Chemistry, 884, pp. 9700-9705, 2012.; Mirasoli, M., Buragina, A., Dolci, L.S., Guardigli, M., Simoni, P. et al. Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of trinitrotoluene. Analytica Chimica Acta, 721, pp. 167-172, 2012.; Stitzel, S.E., Aernecke, M.J. and Walt, D.R. Artificial noses. Annual Review of Biomedical Engineering,13, pp. 1-25, 2011.; Kong, D., Qi, Y., Zhou, L., Lin, B., Li, Z. et al. MEMS based sensors for explosive detection: development and discussion. Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, pp. 265-269, 2008.; Macdonald, J., Lockwood, J.R., Mcfee, J., Altshuler, T., Broach, T. et al. Alternatives for landmine detection. Santa Monica, CA: RAND; 2003.; Méndez-Pardo, L.F. and Pérez-Acosta, A.M., Del laboratorio al campo abierto: el uso de protocolos de adaptación y socialización en Rattus norvegicus, Suma Psicológica, 18, pp. 127-129, 2011.; Mcfee, J.E., Faust, A.A., Andrews, H.R., Clifford, E.T.H. and Mosquera, C.M., Performance of an improved thermal neutron activation detector for buried bulk explosives. Nuclear Instruments and Methods in Physics Research A, 712, pp. 93-101, 2013.; Sudac, D., Majetic, S., Kollar, R., Nad, K., Obhodas, J. et al. Inspecting minefields and residual explosives by fast neutron activation method. IEEE Transactions on Nuclear Science, 59, pp. 1421-1425, 2012.; Bielecki, Z., Janucki, J., Kawalec, A., Mikolajczyk, J., Palka, N. et al. Sensors and systems for the detection of explosive devices - an overview. Metrology and Measurement Systems, XIX, pp. 3-28, 2012.; Mikhaltsevitch, V.T., Techniques used for 14N NQR studies. Annual Reports on NMR Spectroscopy, 66, pp. 149-194, 2009.; Gudmundson, E., Jakobsson, A. and Stoica, P., NQR-based explosives detection - an overview. International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Rumania, pp. 1-4, 2009.; Somasundaram, S.D., Jakobsson, A. and Butt, N.R., Countering radio frequency interference in single-sensor quadrupole resonance. IEEE Geoscience and Remote Sensing Letters, 6, pp. 62-66, 2009.; Jakobsson, A., Mossberg, M., Rowe, M.D. and Smith, J.A-S., Exploiting temperature dependency in the detection of NQR signals. IEEE Transactions on Signal Processing, 54, pp. 1610-1616, 2006.; Prescott, D.W., Nuclear quadrupole spin dynamics : how weak RF pulses and double resonance cross-relaxation contribute to explosives detection [PhD Thesis], Fairfax, VA, George Mason University, 2010.; Rudakov, T.N., Some aspects of the effective detection of ammonium nitrate-based explosives by pulsed NQR method. Applied Magnetic Resonance, 43, pp. 557-566, 2012.; Mozzhukhin, G.V., Molchanov, S.V., Kupriyanova, G.S., Bodnya, A.V., Fedotov, V.V. et al. The detection of industrial explosives by the quadrupole resonance method: some aspects of the detection of ammonium nitrate and trinitrotoluene. NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 231-244, 2009.; Dula, J, Zare, A., H.O, D. and Gader, P., Landmine classification using possibilistic K-nearest neighbors with wideband electromagnetic induction data. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, Baltimore, Maryland, pp. 87091F-1-87091F-12, 2013.; Lou, J., Jin, T. and Zhou, Z., Feature extraction for landmine detection in UWB SAR via SWD and Isomap. Progress In Electromagnetics Research, 138, pp. 157-171, 2013.; Sengodan, A. and Cockshott, W.P., The SIMCA algorithm for processing ground penetrating radar data and its use in landmine detection. 11th International Conference on Information Science, Signal Processing and their Applications, Montreal, Canada, pp. 983-988, 2012.; Heuvel, J. and Fiore, F., Simulation study of x-ray backscatter imaging of pressure-plate improvised explosive devices. In: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, Baltimore, Maryland, pp. 835716-1-835716-15, 2012.; King, C., Blagden, P., Rhodes, G., Maresca, L., Wheatley, A. et al., Mine action : lessons and challenges. Geneva, Switerzalnd, 2005.; Church, P., Mcfee, J.E., Gagnon, S. and Wort, P., Electrical impedance tomographic imaging of buried landmines. IEEE Transactions on Geoscience and Remote Sensing, 44, pp. 2407-2420, 2006.; Lopera, O. and Milisavljevic, N., Prediction of the effects of soil and target properties on the antipersonnel landmine detection performance of ground-penetrating radar: A Colombian case study. Journal of Applied Geophysics, 63, pp. 13-23, 2007.; Lopera, O., An integrated detection and identification methodology applied to ground-penetrating radar data for humanitarian demining applications [PhD Thesis]. Bogotá, Universidad de los Andes, 2008.; Robledo, L., Carrasco, M. and Mery, D., A survey of land mine detection technology. International Journal of Remote Sensing, 30, pp. 2399-2410, 2009.; Chi, W., Ying-Jie, Y. and Xing-Fei, L., An acoustic-to-seismic coupling based landmines detection system in lab-scale experimental environment. Journal of Tianjin University, pp. 160-166, 2011.; Rajesh, K., Murali, R. and Mohanachandran, R., Realisation of ultrasonic Doppler vibrometer array for landmine detection. IEEE International Ultrasonics Symposium, Dresden, Saxony, pp. 1027-1030, 2012.; Ishikawa, J. and Iino, A., A study on prodding detection of antipersonnel landmine using active sensing prodder. International Symposium on Humanitarian Demining, Šibenik, Croatia, pp. 15-23, 2010.; Öztürk, H., Nazli, H., Yegin, K., Biçak, E. and Sezgin, M. et al., Millimeter-wave detection of landmines. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, Baltimore, Maryland, pp. 870913-1-870913-6, 2013.; Thanh, N.T., Hao, D.N. and Sahli, H., Thermal infrared technique for landmine detection : Mathematical formulation and methods. Acta Mathematica Vietnamica, 36, pp. 469-504, 2011.; Chakravarthy, P.K, Jogarao, C.S. and Varun, R.S.V.K., Advanced infrared technique for landmine detection. International Journal of Engineering and Technology, 2, pp. 906-912, 2012.; Gottfried, J.L., Harmon, R.S. and Lapointe, A., Progress in LIBS for land mine detection. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, Orlando, Florida, pp. 73031F-1-73031F-24, 2009.; Hauck, J.P-, Walker, M, Hamadani, S., Bloomhardt, N. and Eagan, J., Laser-induced breakdown spectroscopy based deminers' probe. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, Orlando, Florida, pp. 73031G-1-73031G-9, 2009.; Staszewski, J.J., Hibbitts, C.H., Davis, L. and Bursley, J., Optical detection of buried explosive hazards: a longitudinal comparison of three types of imagery. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, Baltimore, Maryland, pp. 870915-1-870915-9, 2013.; Zhang, X., Jiang, Y. and Zhao, Y., Targets detection and discrimination using laser polarimetric imaging. Frontiers of Optoelectronics in China, 2, pp. 419-424, 2009.; Díaz, D., Hahn, D.W. and Molina, A., Identificación de polímeros mediante espectroscopia de emisión de plasmas producidos por láser (LIBS), Dyna, 76, pp. 217-228, 2009.; Díaz, D., Hahn, D.W. and Molina, A., Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, Orlando, Florida, pp. 73031E-1-73031E-9, 2009.; Coronado-Vergara, J., Aviña-Cervantes, G., Devy, M. and Parra, C., Towards landmine detection using artificial vision. IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, 2005.; Habib, M.K., Humanitarian demining : reality and the challenge of technology - the state of the arts. Advanced Robotic Systems, 4, pp. 151-172, 2007.; Habib, M.K., Humanitarian demining mine detection and sensors. IEEE International Symposium on Industrial Electronics (ISIE), Gdańsk, Poland, pp. 2237-2242, 2011.; Kolba, M.P., Torrione, P.A. and Collins, L.M., Fusion of ground-penetrating radar and electromagnetic induction sensors for landmine detection and discrimination. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, Orlando, Florida, pp. 76641S-1-76641S-7, 2010.; MINISTERIO DE DEFENSA. INDUMIL y Universidad de los Andes desarrollan sistema detector de minas. Ejército Nacional : Informes y Noticias 2012:1.; Sato, M. and Takahashi, K., Deployment of dual-sensor ALIS for humanitarian demining in Cambodia. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, Baltimore, 87090M, 2013.; Rizo, J., Coronado, J., Forero, A., Otálora, C., Devy, M. and Parra, C., URSULA: robotic demining system. The 11th International Conference on Advanced Robotics, Coimbra, Portugal, 2003.; Melo, K, Paez, L., Hernandez, M., Velasco, A., Calderon, F. and Parra, C., Preliminary studies on modular snake robots applied on de-mining tasks. In: EEE IX Latin American Robotics Symposium, Bogotá, Colombia, pp. 1 - 6, 2011.; https://revistas.unal.edu.co/index.php/dyna/article/view/37441