Showing 1 - 17 results of 17 for search 'DENSITY functional theory' Narrow Search
1
Academic Journal

Superior Title: Journal of Physics: Conference Series

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b8; 1247; Mamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149; Sari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160; Agency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USA; Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157; Zhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409; Sharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11; Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464; Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712; Vilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210; Jin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936; Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360; Acelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105; Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51; Johnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63; Vilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9; Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13; Johnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858; Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679; Pérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA); Frisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C Gaussian; Guesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001; Veselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442; Yin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746; Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320; Dzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400; Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62; http://hdl.handle.net/11407/5795

2
Academic Journal

Superior Title: ACS Catalysis

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087976763&doi=10.1021%2facscatal.0c00144&partnerID=40&md5=7539fe98fdb978451bc04e9a8020bc1f; 10; 11; 6213; 6222; Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487; Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228; Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212; Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549; Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.K; Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921; Frauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70; Ardakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19; Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83; Rodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52; Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278; Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393; Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32; Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800; Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709; Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916; Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949; Rekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888; Cortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353; Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166; Mei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15; Molero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149; Stacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604; Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342; Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135; Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521; Jimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540; Zaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293; Jimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003; Zaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003; Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020; Reuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406; Reuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407; Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144; Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427; Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112; Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104; Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979; Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775; Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192; Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002; Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904; Chorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; Nørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, Inc; Plata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311; Heard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003; Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286; Jørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549; Shi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49; Vasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379; Sabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422; Meemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354; http://hdl.handle.net/11407/5933

3
Academic Journal

Superior Title: Electrochimica Acta

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688; 368; Youn, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173; Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65; Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23; Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184; Conway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541; Marković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229; Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808; Gordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214; Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862; Esposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033; Levy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.); Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17; Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372; Esposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900; Kelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81; Ma, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405; Vasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018; Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079; Kurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International Publishing; Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795; dos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617; Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of Chemistry; Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777; Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561; Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269; Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186; Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Blöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775; Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132; Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192; Methfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621; Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883; Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679; Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143; Bader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.K; Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360; Koverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253; Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276; Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38; Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32; Yu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590; Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323; Pašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8; Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314; Da Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715; Krishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234; Hammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220; Hammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240; Paßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933; Duan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490; Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967; Michalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278; Zhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422; Olsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163; Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343; Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020; Zheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80; Tong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585; Khoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412; Beaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796; Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.); Li, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058; Sabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et Liege; Conway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083; Hamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898; Shi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49; Yan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149; Jimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222; Trasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New York; 134686; http://hdl.handle.net/11407/5897

4
Academic Journal

Superior Title: Physical Chemistry Chemical Physics

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087097413&doi=10.1039%2fd0cp00358a&partnerID=40&md5=f9ef8e6b8bf2ab62de90977273bf3151; 22; 24; 13666; 13679; Pera-Titus, M., (2014) Chem. Rev., 114, pp. 1413-1492; Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., (2008) J. Environ. Sci., 20, pp. 14-27; MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Fennell, P., (2010) Energy Environ. Sci., 3, pp. 1645-1669; Darensbourg, D.J., (2010) Inorg. Chem., 49, pp. 10765-10780; Dibenedetto, A., Angelini, A., Stufano, P., (2014) J. Chem. Technol. Biotechnol., 89, pp. 334-353; Corsten, M., Ramírez, A., Shen, L., Koornneef, J., Faaij, A., (2013) Int. J. Greenhouse Gas Control, 13, pp. 59-71; Boix, A.V., Ulla, M.A., Petunchi, J.O., (1996) J. Catal., 162, pp. 239-249; Alayoglu, S., Beaumont, S.K., Zheng, F., Pushkarev, V.V., Zheng, H., Iablokov, V., Liu, Z., Somorjai, G.A., (2011) Top. Catal., 54, pp. 778-785; Hori, Y., Kikuchi, K., Suzuki, S., (1985) Chem. Lett., pp. 1695-1698; Hori, Y., Takahashi, R., Yoshinami, Y., Murata, A., (1997) J. Phys. Chem. B, 101, pp. 7075-7081; Sagar, G.V., Rao, P.V.R., Srikanth, C.S., Chary, K.V.R., (2006) J. Phys. Chem. B, 110, pp. 13881-13888; Van Den Berg, R., Zečević, J., Sehested, J., Helveg, S., De Jongh, P.E., De Jong, K.P., (2016) Catal. Today, 272, pp. 87-93; Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278; Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., (2013) J. Catal., 307, pp. 162-169; Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280; Levy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549; Patterson, P.M., Das, T.K., Davis, B.H., (2003) Appl. Catal., A, 251, pp. 449-455; Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425; Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., (2011) J. Am. Chem. Soc., 133, pp. 2378-2381; Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709; Ono, L.K., Sudfeld, D., Roldan Cuenya, B., (2006) Surf. Sci., 600, pp. 5041-5050; Qi, K.Z., Wang, G.C., Zheng, W.J., (2013) Surf. Sci., 614, pp. 53-63; Kunkel, C., Viñes, F., Illas, F., (2016) Energy Environ. Sci., 9, pp. 141-144; Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921; Li, N., Chen, X., Ong, W.J., MacFarlane, D.R., Zhao, X., Cheetham, A.K., Sun, C., (2017) Acs Nano, 11, pp. 10825-10833; Leitner, W., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 2207-2221; Grabow, L.C., Mavrikakis, M., (2011) Acs Catal., 1, pp. 365-384; Choudhury, J., (2012) ChemCatChem, 4, pp. 609-611; Li, Y.N., Ma, R., He, L.N., Diao, Z.F., (2014) Catal. Sci. Technol., 4, pp. 1498-1512; Posada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., (2015) Top. Catal., 58, pp. 159-173; Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777; Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883; Dubois, J.-L., Sayama, K., Arakawa, H., (1992) Chem. Lett., pp. 5-8; Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2015) ChemSusChem, 8, pp. 2745-2751; Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., (2017) J. Phys. Chem. C, 121, pp. 20306-20314; Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., Liu, P., (2010) Phys. Chem. Chem. Phys., 12, pp. 9909-9917; Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stolze, P., Norskov, N.K., Chorkendorff, I., (1994) Catal. Lett., 26, p. 373; Taylor, P.A., Rasmussen, P.B., Ovesen, C.V., Chorkendorff, I., (1992) Surf. Sci., 261, p. 191; Wang, G.C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.S., Pan, Y.M., Zhao, X.Z., (2004) Surf. Sci., 570, pp. 205-217; Liu, X., Sun, L., Deng, W.-Q., (2018) J. Phys. Chem. C, 122, pp. 8306-8314; Freund, H.J., Roberts, M.W., (1996) Surf. Sci. Rep., 25, pp. 225-273; Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079; Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704; Kresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561; Kresse, G., Hafner, J., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 14251-14269; Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186; Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50; Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979; Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775; Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Grimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473; Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192; Methfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621; Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, Oxford, UK; Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360; Koverga, A.A., Frank, S., Koper, M.T.M., (2013) Electrochim. Acta, 101, pp. 244-253; Momma, K., Izumi, F., (2011) J. Appl. Crystallogr., 44, pp. 1272-1276; Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38; Henkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904; Henkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985; Hammer, B., Nørskov, J.K., Electronic Factors Determining the Reactivity of Metal Surfaces (1995) Surf. Sci., 343, pp. 211-220; Hammer, B., Nørskov, J.K., Why Gold is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240; Ou, L., (2015) Rsc Adv., 5, pp. 57361-57371; Torres, D., Neyman, K.M., Illas, F., (2006) Chem. Phys. Lett., 429, pp. 86-90; Xu, L., Lin, J., Bai, Y., Mavrikakis, M., (2018) Top. Catal., 61, pp. 736-750; Hao, X., Zhang, R., He, L., Huang, Z., Wang, B., (2018) Mol. Catal., 445, pp. 152-162; Tong, Y.J., Wu, S.Y., Chen, H.T., (2018) Appl. Surf. Sci., 428, pp. 579-585; Gajdoš, M., Eichler, A., Hafner, J., (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164; Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.J., Rösch, N., (2012) Nano Lett., 12, pp. 2134-2139; Neef, M., Doll, K., (2006) Surf. Sci., 600, pp. 1085-1092; Ferrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606 (78), pp. 679-689; Luo, M., Hu, G., Lee, M., (2007) Surf. Sci., 601 (6), pp. 1461-1466; Padama, A.A.B., Ocon, J.D., Nakanishi, H., Kasai, H., (2019) J. Phys.: Condens. Matter, 31, p. 415201; Ou, L., Chen, Y., Jin, J., (2016) Rsc Adv., 6, pp. 67866-67874; Yuan, D., Liao, H., Hu, W., (2019) Phys. Chem. Chem. Phys., 21, pp. 21049-21056; Klaja, O., Szczygieł, J., Trawczyński, J., Szyja, B.M., (2017) Theor. Chem. Acc., 136, p. 98; Muttaqien, F., Hamamoto, Y., Inagaki, K., Morikawa, Y., (2014) J. Chem. Phys., 141, p. 034702; http://hdl.handle.net/11407/5996

5
Academic Journal

Superior Title: Journal of Environmental Chemical Engineering

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079893939&doi=10.1016%2fj.jece.2020.103702&partnerID=40&md5=7cefb299e9fc676914e82d9ab836e1c3; Mohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- And hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811; Barrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B., A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction (2012) J. Hazard. Mater., 223-224, pp. 1-12; (2007) Resolución 2115 de 2007, , http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf, Ministerio de la Protección Social, and Ministerio de Ambiente Vivienda y Desarrollo Territorial; Ministerio De Ambiente, Y., Sostenible, D., (2015) Resolución 631 de 2015, , https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf; Chen, S.-S., Cheng, C.-Y., Li, C.-W., Chai, P.-H., Chang, Y.-M., Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process (2007) J. Hazard. Mater., 142, pp. 362-367; Gheju, M., Iovi, A., Balcu, I., Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH (2008) J. Hazard. Mater., 153, pp. 655-662; Chen, G., Electrochemical technologies in wastewater treatment (2004) Sep. Purif. Technol., 38, pp. 11-41; Golder, A.K., Chanda, A.K., Samanta, A.N., Ray, S., Removal of Cr (VI) from aqueous solution: Electrocoagulation vs chemical coagulation (2007) Sep. Sci. Technol., 42, pp. 2177-2193; Agrawal, S.G., Fimmen, R.L., Chin, Y.-P., Reduction of Cr (VI) to Cr (III) by Fe (II) in the presence of fulvic acids and in lacustrine pore water (2009) Chem. Geol., 262, pp. 328-335; Ku, Y., Huang, Y.-H., Chou, Y.-C., Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr (VI) in aqueous solution (2011) J. Mol. Catal. A: Chem., 342, pp. 18-22; Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N.R., Lohchab, R.K., Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study (2011) Bioresour. Technol., 102, pp. 677-682; Sharma, S., Adholeya, A., Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi (2011) Int. Biodeterior. Biodegradation, 65, pp. 309-317; Enniya, I., Rghioui, L., Jourani, A., Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels (2018) Sustain. Chem. Pharm., 7, pp. 9-16; Yang, J., Yu, M., Chen, W., Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics (2015) J. Ind. Eng. Chem., 21, pp. 414-422; Zhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol., 268, pp. 149-157; Valentín-Reyes, J., García-Reyes, R., García-González, A., Soto-Regalado, E., Cerino-Córdova, F., Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons (2019) J. Environ. Manage., 236, pp. 815-822; Saleh, T.A., Gupta, V.K., Al-Saadi, A.A., Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study (2013) J. Colloid Interface Sci., 396, pp. 264-269; Al-Saadi, A.A., Saleh, T.A., Gupta, V.K., Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires (2013) J. Mol. Liq., 188, pp. 136-142; Huang, Y., Hu, H., The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study (2020) Chem. Eng. J., 381; (1990) The Potential Use of Wood Residues for Energy Generation, , Rome; Ramirez, A.P., Giraldo, S., Ulloa, M., Flórez, E., Acelas, N.Y., Production and characterization of activated carbon from wood wastes (2017) J. Phys. Conf. Ser., 935; Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49; Banerjee, M., Basu, R.K., Das, S.K., Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility (2018) Process Saf. Environ. Prot., 116, pp. 693-702; Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination (2010) Carbon, 48, pp. 1252-1261; (1992) METHOD 7196A - Chromium, Hexavalent (Colorimetric), pp. 1-6; Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Sven (1898) Vetenskapsakademiens Handl., 24, pp. 1-39; Blanchard, G., Maunaye, M., Martin, G., Removal of heavy metals from waters by means of natural zeolites (1984) Water Res., 18, pp. 1501-1507; Zakaria, Z.A., Suratman, M., Mohammed, N., Ahmad, W.A., Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust (2009) Desalination, 244, pp. 109-121; Karthikeyan, T., Rajgopal, S., Miranda, L.R., Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon (2005) J. Hazard. Mater., 124 B, pp. 192-199; Kumar, A., Jena, H.M., Adsorption of Cr (VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2 (2017) Process Saf. Environ. Prot., 109, pp. 63-71; Frisch, M.J., (2016) Gaussian 09. Revision A.02, , Wallingford CT; Keith, T.A., Frisch, M.J., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation (1994) Model. Hydrog. Bond, pp. 22-35. , ACS Publications Washington, DC; Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of nitrate and bicarbonate on Fe-(hydr) oxide (2017) Inorg. Chem., 56, pp. 5455-5464; Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746; Liu, J., Cheney, M.A., Wu, F., Li, M., Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces (2011) J. Hazard. Mater., 186, pp. 108-113; Mor, S., Adsorption of chromium from aqueous solution by activated alumina and activated charcoal (2007) Bioresour. Technol., 98, pp. 954-957; Chwastowski, J., Staroń, P., Kołoczek, H., Banach, M., Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber (2017) J. Mol. Liq., 248, pp. 981-989; Anandkumar, J., Mandal, B., Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent (2009) J. Hazard. Mater., 168, pp. 633-640; He, Z., Qu, L., Wang, Z., Qian, J., Yi, S., Effects of zinc chloride - Silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism (2019) Sci. Rep., 9, pp. 1-7; Zhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., Chen, Z., Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood (2018) Bioresour. Technol., 256, pp. 1-10; Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Huang, X., Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures (2016) Bioresour. Technol., 218, pp. 351-359; (1996) Determination of Cr (VI) in Water, Waste Water, and Solid Waste Extracts, pp. 1-6. , http://www.dionex-france.com/library/literature/technical_notes/TN26_LPN034398-02.pdf, Tech. Note 26 LPN 034398-02 1M 1/98; Furusawa, T., Smith, J.M., Fluid-particle and lntraparticle mass transport rates in slurries (1973) Ind. Eng. Chem. Fundam., 12, pp. 197-203; Bautista-Toledo, M.I., Rivera-Utrilla, J., Ocampo-Pérez, R., Carrasco-Marín, F., Sánchez-Polo, M., Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste (2014) Carbon, 73, pp. 338-350; Ocampo-Pérez, R., Aguilar-Madera, C.G., Díaz-Blancas, V., 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets (2017) Chem. Eng. J., 321, pp. 510-520; Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40, pp. 1361-1403; Freundlich, H., Über die adsorption in lösungen (1907) Z. Phys. Chem., 57, pp. 385-470; Temkin, M.J., Pyzhev, V., Recent modifications to Langmuir isotherms (1940) Acta Physicochim. USSR, 12, pp. 217-222; Nguyen, H., You, S., Hosseini-Bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review (2017) Water Res., 120, pp. 88-116; Hall, K., Eagleton, L., Acrivos, A., Vermeulen, T., Pore- And solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions (1966) Ind. Eng. Chem. Fundam., 5, pp. 212-223; Cherdchoo, W., Nithettham, S., Charoenpanich, J., Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea (2019) Chemosphere, 221, pp. 758-767; Choudhary, B., Paul, D., Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar (2018) J. Environ. Chem. Eng., 6, pp. 2335-2343; Rangabhashiyam, S., Selvaraju, N., Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell (2015) J. Mol. Liq., 207, pp. 39-49; Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., Zhang, J., Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar (2017) Chemosphere, 186, pp. 422-429; Acelas, N.Y., Flórez, E., Chloride adsorption on Fe-and Al-(hydr) oxide: Estimation of Gibbs free energies (2018) Adsorption, 24, pp. 243-248; Florez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821; Khaloo, S.S., Matin, A.H., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell (2012) Water Sci. Technol., 65, pp. 1341-1349; Li, H., Dong, X., Da Silva, E.B., De Oliveira, L.M., Chen, Y., Ma, L.Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478; Scott, A.P., Radom, L., Harmonic vibrational frequencies: An evaluation of Hartree- Fock, Møller- Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors (1996) J. Phys. Chem., 100, pp. 16502-16513; http://hdl.handle.net/11407/6003

6
Academic Journal

Superior Title: Thin Solid Films

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077507438&doi=10.1016%2fj.tsf.2019.137783&partnerID=40&md5=071c6b7c2e38e26006b05d729ca94e4e; 696; Zunger, A., Jaffe, J.E., Structural origin of optical bowing in semiconductor alloys (1983) Phys. Rev. Lett., 51, pp. 662-665; Alonso, M.I., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of cuinse2, cugase2, cuins2, and cugas2 (2001) Phys. Rev. B, 63, p. 075203; Parlak, C., Eryi?it, R., Ab initio volume-dependent elastic and lattice dynamical properties of chalcopyrite cugase2 (2006) Phys. Rev. B, 73, p. 245217; Liu, F., Yang, J., Zhou, J., Lai, Y., Jia, M., Li, J., Liu, Y., One-step electrodeposition of cugase2 thin films (2012) Thin Sol. Films, 520, pp. 2781-2784; Shay, J., Wernick, J., Ternary Chalcopyrite Crystals: Growth, Electronic Structure, and Applications (1975), Elsevier Oxford; Reshak, A.H., Linear, nonlinear optical properties and birefringence of aggax2 (x= s, se, te) compounds (2005) Physica B, 369, pp. 243-253; Kumar, V., Tripathy, S.K., Jha, V., Second order nonlinear optical properties of aIbIIIc2 VI chalcopyrite semiconductors (2012) Appl. Phys. Lett., 101, p. 192105; Samanta, L., Ghosh, D., Bhar, G., Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals (1986) Phys. Rev. B, 33, p. 4145; Tinoco, T., Quintero, M., Rincón, C., Variation of the energy gap with composition in aIbIIIc2 VI chalcopyrite-structure alloys (1991) Phys. Rev. B, 44, p. 1613; Wei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and zn-based II-VI alloys (1995) J. Appl. Phys., 78, pp. 3846-3856; Wu, J., Hirai, Y., Kato, T., Sugimoto, H., Bermudez, V., New world record efficiency up to 22.9% for cu(in,ga)(se,s)2 thin-film solar cells (2018) 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7), pp. 10-15; Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Solar cell efficiency tables (version 53) (2019) Prog Photovolt Res Appl., 27, pp. 3-12; Salomé, P.M., Fjällström, V., Szaniawski, P., Leitão, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P., Edoff, M., A comparison between thin film solar cells made from co-evaporated cuin(1-x)ga(x)se2 using a one-stage process versus a three-stage process (2015) Prog. Photovolt. Res. Appl., 23, pp. 470-478; Chiril?, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Tiwari, A.N., Highly efficient cu(in,ga)se2 solar cells grown on flexible polymer films (2011) Nat. Mater., 10 (11), p. 857; Chopra, K., Paulson, P., Dutta, V., Thin-film solar cells: an overview (2004) Prog. Photovolt. Res. Appl., 12, pp. 69-92; Harvey, T.B., Mori, I., Stolle, C.J., Bogart, T.D., Ostrowski, D.P., Glaz, M.S., Du, J., Korgel, B.A., Copper indium gallium selenide (cigs) photovoltaic devices made using multistep selenization of nanocrystal films (2013) ACS Appl. Mater. Interfaces, 5, pp. 9134-9140; Ojajarvi, J., Rasanen, E., Sadewasser, S., Lehmann, S., Wagner, P., Lux-Steiner, M.C., Tetrahedral chalcopyrite quantum dots for solar-cell applications (2011) Appl. Phys. Lett., 99, p. 111907; Stolle, C.J., Harvey, T.B., Pernik, D.R., Hibbert, J.I., Du, J., Rhee, D.J., Akhavan, V.A., Korgel, B.A., Multiexciton solar cells of cuinse2 nanocrystals (2014) J. Phys. Chem. Lett., 5, pp. 304-309; Panthani, M.G., Stolle, C.J., Reid, D.K., Rhee, D.J., Harvey, T.B., Akhavan, V.A., Yu, Y., Korgel, B.A., Cuinse2 quantum dot solar cells with high open-circuit voltage (2013) J. Phys. Chem. Lett., 4, pp. 2030-2034; Xin, B., Wu, Y., Zhang, N., Yu, H., Feng, W., High performance UV photodetector based on 2d non-layered cugas2 nanosheets (2019) Semicond. Sci. Technol., 34, p. 055007; Soni, A., Dashora, A., Gupta, V., Arora, C.M., Rérat, M., Ahuja, B.L., Pandey, R., Electronic and optical modeling of solar cell compounds cugase2 and cuinse2 (2011) J. Electron. Mater., 40, pp. 2197-2208; Nayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of cuXY2 (x=in, ga and y=s,se) chacopyrite semiconductors (2013) Physica B, 416, pp. 55-63; Xue, H.-T., Tang, F.-L., Lu, W.-J., Feng, Y.-D., Wang, Z.-M., Wang, Y., First-principles investigation of structural phase transitions and electronic properties of cugase2 up to 100?GPa (2013) Comput. Mater. Sci., 67, pp. 21-26; Pluengphon, P., Bovornratanaraks, T., Phase stability and elastic properties of cugase2 under high pressure (2015) Solid State Commun., 218, pp. 1-5; Zhao, Z., Zhou, D., Yi, J., Analysis of the electronic structures of 3d transition metals doped cugas2 based on DFT calculations (2014) J. Semicond., 35, p. 013002; Schwarz, K., Blaha, P., Madsen, G.K., Electronic structure calculations of solids using the wien2k package for material sciences (2002) Comput. Phys. Commun., 147, pp. 71-76; Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D., Wien2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (revised edition) (2018), Vienna University of Technology, Austria; Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406; Tran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102, p. 226401; Geilhufe, M., Nayak, S.K., Thomas, S., Däne, M., Tripathi, G.S., Entel, P., Hergert, W., Ernst, A., Effect of hydrostatic pressure and uniaxial strain on the electronic properties of pb1?xsnxte (2015) Phys. Rev. B, 92, p. 235203; Sakata, K., Magyari-Köpe, B., Gupta, S., Nishi, Y., Blom, A., Deák, P., The effects of uniaxial and biaxial strain on the electronic structure of germanium (2016) Comput. Mater. Sci., 112 (A), pp. 263-268; Delin, A., Ravindran, P., Eriksson, O., Wills, J.M., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quantum Chem., 69, pp. 349-358; Garbato, L., Ledda, F., Rucci, A., Structural distortions and polymorphic behaviour in ABC2 and AB2c4 tetrahedral compounds (1987) Prog. Cryst. Growth Charact., 15, pp. 1-41; Abrahams, S.C., Bernstein, J.L., Piezoelectric nonlinear optic cugase2 and cdgeas2: crystal structure, chalcopyrite microhardness, and sublattice distortion (1974) J. Chem. Phys., 61, pp. 1140-1146; Chen, S., Gong, X.G., Wei, S.H., Band-structure anomalies of the chalcopyrite semiconductors cugax2 versus aggax2 (x=s and se) and their alloys (2007) Phys. Rev. B, 75, p. 205209; Belhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B., Aourag, H., Structural, electronic and optical calculations of cu(in,ga)se2 ternary chalcopyrites (2004) Phys. Status Solidi B, 241, pp. 2516-2528; Spiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in ib-III-VI2 semiconductors (1974) Phys. Status Solidi B, 62, pp. 183-192; Gonzalez, J., Rincón, C., Optical absorption and phase transitions in cu-III-VI2 compounds semiconductors at high pressure (1990) J. Phys. Chem. Solids, 51, pp. 1093-1097; 406090; http://hdl.handle.net/11407/5791

7
Academic Journal

Superior Title: Materials Research Express

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb; Pokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594; Ivanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194; Endo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892; Govindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin Z; Bardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127; He, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474; Kianfar, E., (2019) Microchem. J., 145, pp. 966-978; Goda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096; Dvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20; Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31; Seifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360; Cabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88; Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059; Hu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41); Yu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306; Allec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345; Liao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708; Fernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418; Sorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39); Ansari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278; Hao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10; Pan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651; Liu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363; Sorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23); Dai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300; Fernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224; Aierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110; Montes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5; Xiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646; Montes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371; Ju, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097; Hao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10; Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112; Hu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480; Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745; Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865; Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97; Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64; http://hdl.handle.net/11407/5813

8
Academic Journal

Superior Title: International Journal of Quantum Chemistry

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f14; 120; Cao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424; Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014; Ratinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167; Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36; Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699; Zhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56; Yang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304; Liu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708; Ataca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402; Ataca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303; Ding, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610; Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126; Bagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085; Xia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458; Kou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675; Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618; Zhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802; Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903; Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110; Srivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530; Agnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171; Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704; Ospina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562; Safari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153; Wang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075; Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175; Hao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302; Ziletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407; Lee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149; Huang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101; Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77; Zhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776; Wang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316; Wang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524; Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60; Zhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548; Zhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340; Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745; Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401; Klime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201; Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43; Deml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996; Cai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199; Kistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010; Kong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919; Aierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408; Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219; Mahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428; Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37; 207608; http://hdl.handle.net/11407/5740

9
Academic Journal

Superior Title: Computational Materials Science

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076670739&doi=10.1016%2fj.commatsci.2019.109457&partnerID=40&md5=79264226de8eb3725bc76ea02e93e37b; 174; Frank, S., Poncharal, P., Wang, Z.L., Heer, W.A.D., Carbon nanotube quantum resistors (1998) Science, 280 (5370), pp. 1744-1746; Tans, S.J., Verschueren, A.R.M., Dekker, C., Room-temperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52; Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Ballistic carbon nanotube field-effect transistors (2003) Nature, 424, pp. 654-657; Kong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Adv. Mater., 13 (18), pp. 1384-1386; Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M., Carbon nanotube sensors for gas and organic vapor detection (2003) Nano Lett., 3 (7), pp. 929-933; Wang, J., Carbon-nanotube based electrochemical biosensors: a review (2005) Electroanalysis, 17 (1), pp. 7-14; Xie, X.-L., Mai, Y.-W., Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review (2005) Mater. Sci. Eng.: R: Rep., 49 (4), pp. 89-112; Coleman, J.N., Khan, U., Blau, W.J., Gun, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube polymer composites (2006) Carbon, 44 (9), pp. 1624-1652; Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos.: Part A, 41 (10), pp. 1345-1367; Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes (2003) Carbon, 41 (5), pp. 1057-1062; Rao, G.P., Lu, C., Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review (2007) Sep. Purif. Technol., 58 (1), pp. 224-231; Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis (2011) J. Hazard. Mater., 198, pp. 282-290; Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297 (5582), pp. 787-792; Teradal, N.L., Jelinek, R., Carbon nanomaterials in biological studies and biomedicine (2017) Adv. Healthc. Mater., 6 (17), pp. 1-36; Kumar, T., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.-H., Carbon nanotubes: a potential material for energy conversion and storage (2018) Prog. Energy Combust. Sci., 64, pp. 219-253; Hirsch, A., Functionalization of single-walled carbon nanotubes (2002) Angew. Chem.-Int. Ed., 41 (11), pp. 1853-1859; Sun, Y.-P., Fu, K., Lin, Y.I., Huang, W., Functionalized carbon nanotubes: properties and applications (2002) Acc. Chem. Res., 35 (12), pp. 1096-1104; Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136; Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, M., Prato, M., Decorating carbon nanotubes with metal or semiconductor nanoparticles (2007) J. Mater. Chem., 17, pp. 2679-2694; Qi, Q., Liu, H., Feng, W., Tian, H., Xu, H., Huang, X., Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods (2015) Comput. Mater. Sci., 96, pp. 268-276; Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X., Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution (2014) Angew. Chem.-Int. Ed., 53 (26), pp. 6710-6714; Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Environmental Science Highly active and durable non-precious-metal hydrogen evolution reaction (2014) Energy Environ. Sci., 7, pp. 1919-1923; Tessonnier, J.-P., Pesant, L., Ehret, G., Ledoux, M.J., Pham-huu, C., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde (2005) Appl. Catal. A: General, 288 (1-2), pp. 203-210; Reyhani, A., Mortazavi, S.Z., Mirershadi, S., Moshfegh, A.Z., Parvin, P., Golikand, A.N., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions (2011) J. Phys. Chem. C, 115 (14), pp. 6994-7001; Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes (2002) Appl. Phys. A, 74 (3), pp. 387-391; Vander Wal, R.L., Ticich, T.M., Curtis, V.E., Substrate support interactions in metal-catalyzed carbon nanofiber growth (2001) Carbon, 39 (15), pp. 2277-2289; Barcaro, G., Zhu, B., Hou, M., Fortunelli, A., Carbon clusters, surface growth, nickel surfaces, empirical potentials, density functional calculations (2012) Comput. Mater. Sci., 63, pp. 74-81; Singh, N.B., Bhattacharya, B., Mondal, R., Nickel cluster functionalised carbon nanotube for CO molecule detection: a theoretical study (2016) Mol. Phys., 114 (5), pp. 671-680; Xu, H., Chu, W., Sun, W., Liu, Z., DFT studies of Ni cluster on graphene surface: effect of CO2 activation (2016) RSC Adv., 6, pp. 96545-96553; Thu, T., Nguyen, H., Le, V.K., Minh, C.L., Nguyen, N.H., A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube (2017) Comput. Theor. Chem., 1100, pp. 46-51; Banhart, F., Charlier, J., Ajayan, P.M., Dynamic behavior of nickel atoms in graphitic networks (2000) Phys. Rev. Lett., 84 (4), pp. 686-689; Gallego, J., Barrault, J., Batiot-dupeyrat, C., Mondragon, F., Intershell spacing changes in MWCNT induced by metal CNT interactions (2013) Micron, 44, pp. 463-467; Dahal, A., Batzill, M., Graphene nickel interfaces: a review (2014) Nanoscale, 6 (5), pp. 2548-2562; Kuzubov, A.A., Kovaleva, E.A., Tomilin, F.N., Mikhaleva, N.S., Kuklin, A.V., On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates (2015) J. Magn. Magn. Mater., 396, pp. 102-105; Cha, J.J., Weyland, M., Briere, J.-F., Daykov, I.P., Three-dimensional imaging of carbon nanotubes deformed by metal islands (2007) Nano Lett., 7 (12), pp. 3770-3773; Nemec, N., Tománek, D., Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: an ab initio study (2006) Phys. Rev. Lett., 96 (76802), pp. 1-4; Sung, C.-M., Tai, M.-F., Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure (1997) Int. J. Refractory Met. Hard Mater., 15 (4), pp. 237-256; Menon, M., Andriotis, A.N., Froudakis, G.E., Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls (2000) Chem. Phys. Lett., 320 (5-6), pp. 425-434; Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Emery, V., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110 (42), pp. 21014-21020; Durgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys. Rev. B, 67 201401, pp. 1-4; Vitale, V., Curioni, A., Andreoni, W., Metal-carbon nanotube contacts: the link between schottky barrier and chemical bonding (2008) J. Am. Chem. Soc., 130 (18), pp. 5848-5849; Fuentes-cabrera, M., Baskes, M.I., Melechko, A.V., Simpson, M.L., Bridge structure for the graphene/Ni(111) system: a first principles study (2008) Phys. Rev. B, 77 (35405), pp. 1-5; Sun, X., Entani, S., Yamauchi, Y., Pratt, A., Kurahashi, M., Spin polarization study of graphene on the Ni(111) surface by density functional theory calculations with a semiempirical long-range dispersion correction (2014) J. Appl. Phys., 114 143713, pp. 1-7; Soler, M., Artacho, E., Gale, J.D., Garc, A., Junquera, J., Ordej, P., Daniel, S., The SIESTA method for ab initio order-N materials (2002) J. Phys.: Condensed Matter, 14, pp. 2745-2779; Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 170201, pp. 1-4; Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals (2010) J. Phys.: Condensed Matter, 22 (22201), pp. 1-5; Carrasco, J., Liu, W., Michaelides, A., Tkatchenko, A., Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces (2014) J. Chem. Phys., 140 (84704), pp. 1-10; Mittendorfer, F., Garhofer, A., Redinger, J., Klime , J., Harl, J., Kresse, G., Graphene on Ni(111): strong interaction and weak adsorption (2011) Phys. Rev. B, 84 201401, pp. 1-4; Rivero, P., García-suárez, V.M., Pereñiguez, D., Utt, K., Yang, Y., Bellaiche, L., Park, K., Barraza-lopez, S., Systematic pseudopotentials from reference eigenvalue sets for DFT calculations (2015) Comput. Mater. Sci., 98, pp. 372-389; Qin, L.-C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., Iijima, S., The smallest carbon nanotube (2000) Nature, 408, p. 50; Taylor, P., Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys., 19 (4), pp. 553-566; Rance, G.A., Marsh, D.H., Bourne, S.J., Reade, T.J., Khlobystov, A.N., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures (2010) ACS Nano, 4 (8), pp. 4920-4928; Patra, A., Bates, J.E., Sun, J., Perdew, J.P., Properties of real metallic surfaces: effects of density functional semilocality and van der waals nonlocality (2017) Proc. Natl. Acad. Sci., 114 (44), pp. E9188-E9196; Zhang, W.-B., Chen, C., Tang, P.-Y., Zhang, W.-B., Chen, C., Tang, P.-Y., First-principles study for stability and binding mechanism of graphene/Ni(111) interface: role of vdW interaction (2014) J. Chem. Phys., 141 (44708), pp. 1-9; Christian, M.S., Otero-de-la roza, E.R. Johnson, A., Johnson, E.R., Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model (2017) Carbon, 118, pp. 184-191; Gebhardt, J., Vi, F., Andreas, G., Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces (2012) Phys. Rev. B, 86 195431, pp. 1-15; Cusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M.C., Fortunelli, A., Iannaccone, G., Electrical properties of graphene- metal contacts (2017) Scientific Rep., 7, pp. 1-11; Zhang, C., Lee, B.-J., Li, H., Samdani, J., Kang, T.-H., Yu, J.-S., Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications (2018) Commun. Chem., 1, pp. 1-10; 9270256; http://hdl.handle.net/11407/5780

10
Conference

Contributors: Quintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia, Gonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombia, Ospina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombia, Marino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombia

Superior Title: Scopus

File Description: application/pdf

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95; Journal of Physics: Conference Series; Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017; Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.; Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717; Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081; Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944; Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023; Evans, R. C. (1964). An Introduction to Crystal Chemistry.; Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39); Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.; Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100; Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414; Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142; Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978; Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616; Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.; Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188; Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.; Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865; Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766; Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002; Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081; Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.; Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006; Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.; Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023; Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327; Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103; Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466; Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836; Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6; Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4; Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011; Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022; http://hdl.handle.net/11407/4279; reponame:Repositorio Institucional Universidad de Medellín; instname:Universidad de Medellín

11
Academic Journal

Contributors: Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Liu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States, Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States

Superior Title: Scopus

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029514849&doi=10.1021%2facs.jpcc.7b05442&partnerID=40&md5=e98cf75bdd9602a6f351521524d6b1f5; Journal of Physical Chemistry C; Journal of Physical Chemistry C Volume 121, Issue 36, 14 September 2017, Pages 19786-19795; Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048; Choi, J. -., Bugli, G., & Djéga-Mariadassou, G. (2000). Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides. Journal of Catalysis, 193(2), 238-247. doi:10.1006/jcat.2000.2894; Christensen, A. N. (1977). A neutron diffraction investigation on a crystal of alpha-Mo2C. Acta Chem.Scand., 31, 509-511.; Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075; Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.; Espinoza-Monjardín, Cruz-Reyes, J., Del Valle-Granados, M., Flores-Aquino, E., Avalos-Borja, M., & Fuentes-Moyado, S. (2008). Synthesis, characterization and catalytic activity in the hydrogenation of cyclohexene with molybdenum carbide. Catalysis Letters, 120(1-2), 137-142. doi:10.1007/s10562-007-9264-9; Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882g; Frühberger, B., & Chen, J. G. (1996). Reaction of ethylene with clean and carbide-modified mo(110): Converting surface reactivities of molybdenum to pt-group metals. Journal of the American Chemical Society, 118(46), 11599-11609. doi:10.1021/ja960656l; Gallaway, W. S., & Barker, E. F. (1942). The infra-red absorption spectra of ethylene and tetra-deutero-ethylene under high resolution. The Journal of Chemical Physics, 10(2), 88-97.; Gao, F., Wang, Y., & Tysoe, W. T. (2006). Ethylene hydrogenation on mo(CO)6 derived model catalysts in ultrahigh vacuum: From oxycarbide to carbide to MoAl alloy. Journal of Molecular Catalysis A: Chemical, 249(1-2), 111-122. doi:10.1016/j.molcata.2006.01.016; Gomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445; Govender, A., Curulla Ferré, D., & Niemantsverdriet, J. W. (2012). A density functional theory study on the effect of zero-point energy corrections on the methanation profile on fe(100). ChemPhysChem, 13(6), 1591-1596. doi:10.1002/cphc.201100733; Grev, R. S., Janssen, C. L., & Schaefer III, H. F. (1991). Concerning zero-point vibrational energy corrections to electronic energies. The Journal of Chemical Physics, 95(7), 5128-5132.; Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495; Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0; Hou, R., Chang, K., Chen, J. G., & Wang, T. (2015). Top.Catal., 58, 240-246.; Hugosson, H. W., Eriksson, O., Nordström, L., Jansson, U., Fast, L., Delin, A., . . . Johansson, B. (1999). Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. Journal of Applied Physics, 86(7), 3758-3767.; Hwu, H. H., & Chen, J. G. (2005). Surface chemistry of transition metal carbides. Chemical Reviews, 105(1), 185-212. doi:10.1021/cr0204606; Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2017). Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 19(2) doi:10.1039/c6cp07400f; Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106; Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.; Lee, J. S., Volpe, L., Ribeiro, F. H., & Boudart, M. (1988). Molybdenum carbide catalysts. II. topotactic synthesis of unsupported powders. Journal of Catalysis, 112(1), 44-53. doi:10.1016/0021-9517(88)90119-4; Liu, H., Zhu, J., Lai, Z., Zhao, R., & He, D. (2009). A first-principles study on structural and electronic properties of Mo2C. Scripta Materialia, 60(11), 949-952. doi:10.1016/j.scriptamat.2009.02.010; Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629; Luo, Q., Wang, T., Walther, G., Beller, M., & Jiao, H. (2014). Molybdenum carbide catalysed hydrogen production from formic acid - A density functional theory study. Journal of Power Sources, 246, 548-555. doi:10.1016/j.jpowsour.2013.07.102; Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188; Oshikawa, K., Nagai, M., & Omi, S. (2001). Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. Journal of Physical Chemistry B, 105(38), 9124-9131. doi:10.1021/jp0111867; Oyama, S. T. (1996). The Chemistry of Transition Metal Carbides and Nitrides.; Parthe, E., & Sadagopan, V. (1963). The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 16(3).; Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865; Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389k; Posada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225f; Posada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943a; Posada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8; Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J. A., & Illas, F. (2017). Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 656, 24-32. doi:10.1016/j.susc.2016.10.001; Qi, K. -., Wang, G. -., & Zheng, W. -. (2013). Structure-sensitivity of ethane hydrogenolysis over molybdenum carbides: A density functional theory study. Applied Surface Science, 276, 369-376. doi:10.1016/j.apsusc.2013.03.099; Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032; Rodriguez, J. A., Dvorak, J., & Jirsak, T. (2000). Chemistry of thiophene on mo(110), MoCx and MoSx surfaces: Photoemission studies. Surface Science, 457(1), L413-L420. doi:10.1016/S0039-6028(00)00416-7; Schaidle, J. A., Blackburn, J., Farberow, C. A., Nash, C., Steirer, K. X., Clark, J., . . . Ruddy, D. A. (2016). Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity. ACS Catalysis, 6(2), 1181-1197. doi:10.1021/acscatal.5b01930; Schaidle, J. A., & Thompson, L. T. (2015). Fischer-tropsch synthesis over early transition metal carbides and nitrides: CO activation and chain growth. Journal of Catalysis, 329, 325-334. doi:10.1016/j.jcat.2015.05.020; Schweitzer, N. M., Schaidle, J. A., Ezekoye, O. K., Pan, X., Linic, S., & Thompson, L. T. (2011). High activity carbide supported catalysts for water gas shift. Journal of the American Chemical Society, 133(8), 2378-2381. doi:10.1021/ja110705a; Shi, X. -., Wang, S. -., Wang, H., Deng, C. -., Qin, Z., & Wang, J. (2009). Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study. Surface Science, 603(6), 852-859. doi:10.1016/j.susc.2009.01.041; Shi, Y., Yang, Y., Li, Y. -., & Jiao, H. (2016). Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations. Applied Catalysis A: General, 524, 223-236. doi:10.1016/j.apcata.2016.07.003; Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892; Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987; Vines, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 122(17) doi:10.1063/1.1888370; Vitale, G., Guzmán, H., Frauwallner, M. L., Scott, C. E., & Pereira-Almao, P. (2015). Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catalysis Today, 250, 123-133. doi:10.1016/j.cattod.2014.05.011; Wang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). Dissociative hydrogen adsorption on the hexagonal Mo2C phase at high coverage. Journal of Physical Chemistry C, 118(15), 8079-8089. doi:10.1021/jp501471u; Wang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). High coverage CO adsorption and dissociation on the orthorhombic mo 2C(100) surface. Journal of Physical Chemistry C, 118(6), 3162-3171. doi:10.1021/jp412067x; Wyvratt, B. M., Gaudet, J. R., & Thompson, L. T. (2015). Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts. Journal of Catalysis, 330, 280-287. doi:10.1016/j.jcat.2015.07.023; Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5; Zhang, J., Wu, W., & Liu, S. (2014). In situ IR spectroscopic study on the hydrogenation of 1, 3-butadiene on fresh MO2C/γ-A1203 catalyst. China Petroleum Processing and Petrochemical Technology, 16(4), 32-37.; http://hdl.handle.net/11407/4284; reponame:Repositorio Institucional Universidad de Medellín; instname:Universidad de Medellín

12
Academic Journal

Contributors: Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia

Superior Title: Scopus

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038088491&doi=10.1007%2fs10853-017-1910-z&partnerID=40&md5=02736fee6dd9865756ead21c2be75c19; Journal of Materials Science; Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425; Gupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog Mater Sci, 73, pp. 44-126; Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926; Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem Rev, 113 (5), pp. 3766-3798; Viti, L., Hu, J., Coquillat, D., Knap, W., Tredicucci, A., Politano, A., Vitiello, M.S., Black phosphorus terahertz photodetectors (2015) Adv Mater, 27 (37), pp. 5567-5572; Viti, L., Hu, J., Coquillat, D., Politano, A., Consejo, C., Knap, W., Vitiello, M.S., Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies (2016) Adv Mater, 28 (34), pp. 7390-7396; Viti, L., Hu, J., Coquillat, D., Politano, A., Knap, W., Vitiello, M.S., Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response (2016) Sci Rep, 6 (20), p. 474; Viti, L., Politano, A., Vitiello, M.S., Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges (2017) APL Mater, 5 (3), p. 035602; Mitrofanov, O., Viti, L., Dardanis, E., Giordano, M.C., Ercolani, D., Politano, A., Sorba, L., Vitiello, M.S., Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging (2017) Sci Rep, 7, p. 44240; Ren, X., Lian, P., Xie, D., Yang, Y., Mei, Y., Huang, X., Wang, Z., Yin, X., Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review (2017) J Mater Sci, 52 (17), pp. 10364-10386; Kou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J Phys Chem Lett, 6 (14), pp. 2794-2805; Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2d semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041; Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nat Nanotechnol, 9 (5), pp. 372-377; Hu, T., Hong, J., First-principles study of metal adatom adsorption on black phosphorene (2015) J Phys Chem C, 119 (15), pp. 8199-8207; Hu, W., Yang, J., Defect in phosphorene (2014) J Phys Chem C, 119 (35), pp. 20474-20480; Pereira, J.M., Katsnelson, M.I., Landau levels of single-layer and bilayer phosphorene (2015) Phys Rev B, 92 (7), p. 075437; Cai, Y., Zhang, G., Zhang, Y.W., Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures (2015) J Phys Chem C, 119 (24), pp. 13929-13936; Cai, Y., Ke, Q., Zhang, G., Zhang, Y.W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J Phys Chem C, 119 (6), pp. 3102-3110; Zhang, R., Li, B., Yang, J., A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene (2015) J Phys Chem C, 119 (5), pp. 2871-2878; Wang, V., Kawazoe, Y., Geng, W.T., Native point defects in few-layer phosphorene (2015) Phys Rev B, 91 (4), p. 045433; Ziletti, A., Carvalho, A., Trevisanutto, P.E., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Phosphorene oxides: bandgap engineering of phosphorene by oxidation (2015) Phys Rev B, 91 (8), p. 085407; Sa, B., Li, Y.L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: the potential application as a photocatalyst (2014) J Phys Chem C, 118 (46), pp. 26560-26568; Ramasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys Rev B, 90 (8), p. 085424; Li, W., Zhang, G., Zhang, Y.W., Electronic properties of edge-hydrogenated phosphorene nanoribbons: a first-principles study (2014) J Phys Chem C, 118 (38), pp. 22368-22372; Padilha, J.E., Fazzio, A., da Silva, A.J.R., van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating (2015) Phys Rev Lett, 114 (6), p. 066803; Kulish, V.V., Malyi, O.I., Persson, C., Wu, P., Adsorption of metal adatoms on single-layer phosphorene (2015) Phys Chem Chem Phys, 17 (2), pp. 992-1000; Li, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys Rev B, 90 (11), p. 115439; Wang, G., Pandey, R., Karna, S.P., Phosphorene oxide: stability and electronic properties of a novel two-dimensional material (2015) Nanoscale, 7 (2), pp. 524-531; Liang, L., Wang, J., Lin, W., Sumpter, B.G., Meunier, V., Pan, M., Electronic bandgap and edge reconstruction in phosphorene materials (2014) Nano Lett, 14 (11), pp. 6400-6406; Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys Rev Lett, 114 (4), p. 046801; Liu, Q., Zhang, X., Abdalla, L.B., Fazzio, A., Zunger, A., Switching a normal insulator into a topological insulator via electric field with application to phosphorene (2015) Nano Lett, 15 (2), pp. 1222-1228; Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers (2014) J Phys Chem C, 118 (25), pp. 14051-14059; Das, S., Zhang, W., Demarteau, M., Hoffmann, A., Dubey, M., Roelofs, A., Tunable transport gap in phosphorene (2014) Nano Lett, 14 (10), pp. 5733-5739; Dai, J., Zeng, X.C., Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J Phys Chem Lett, 5 (7), pp. 1289-1293; Nicotra, G., Mio, A.M., Cupolillo, A., Hu, J., Wei, J., Mao, Z., Deretzis, I., Spinella, C., Stem and eels investigation on black phosphorus at atomic resolution (2015) Microsc Microanal, 21, p. 427; Nicotra, G., Politano, A., Mio, A., Deretzis, I., Hu, J., Mao, Z., Wei, J., Spinella, C., Absorption edges of black phosphorus: a comparative analysis (2016) Physica Status Solidi B, 253 (12), pp. 2509-2514; Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Watanabe, K., Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures (2014) 2D Mater, 2 (1), p. 011001; Kim, J.S., Liu, Y., Zhu, W., Kim, S., Wu, D., Tao, L., Dodabalapur, A., Akinwande, D., Toward air-stable multilayer phosphorene thin-films and transistors (2015) Sci Rep, 5, p. 8989; Pei, J., Gai, X., Yang, J., Wang, X., Yu, Z., Choi, D.Y., Luther-Davies, B., Lu, Y., Producing air-stable monolayers of phosphorene and their defect engineering (2016) Nat Commun, 7 (10), p. 450; Politano, A., Vitiello, M., Viti, L., Boukhvalov, D., Chiarello, G., The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials beyond graphene and topological insulators (2017) FlatChem, 1, pp. 60-64; Yang, T., Dong, B., Wang, J., Zhang, Z., Guan, J., Kuntz, K., Warren, S.C., Tománek, D., Interpreting core-level spectra of oxidizing phosphorene: theory and experiment (2015) Phys Rev B, 92 (12), pp. 1-6; Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K., Blanter, S.I., Groenendijk, D.J., Alvarez, J., Isolation and characterization of few-layer black phosphorus (2014) 2D Mater, 1 (2), p. 025001; Huang, Y., Qiao, J., He, K., Bliznakov, S., Sutter, E., Chen, X., Luo, D., Decker, J., Interaction of black phosphorus with oxygen and water (2016) Chem Mater, 28 (22), pp. 8330-8339; Politano, A., Vitiello, M.S., Viti, L., Hu, J., Mao, Z., Wei, J., Chiarello, G., Boukhvalov, D.W., Unusually strong lateral interaction in the co overlayer in phosphorene-based systems (2016) Nano Res, 9 (9), pp. 2598-2605; Miao, J., Cai, L., Zhang, S., Nah, J., Yeom, J., Wang, C., Air-stable humidity sensor using few-layer black phosphorus (2017) ACS Appl Mater Interfaces, 9 (11), pp. 10019-10026; Shim, J., Oh, S., Kang, D.H., Jo, S.H., Ali, M.H., Choi, W.Y., Heo, K., Kim, M., Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic (2016) Nat Commun, 7 (13), p. 413; Mukhopadhyay, T.K., Datta, A., Ordering and dynamics for the formation of two-dimensional molecular crystals on black phosphorene (2017) J Phys Chem C, 121 (18), pp. 10210-10223; Dion, M., Rydberg, H., Schroder, E., Langreth, D.C., Lundqvist, B.I., Van der Waals density functional for general geometries (2004) Phys Rev Lett, 92 (24), p. 246401; Klimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J Phys Condens Matter, 22 (2), p. 022201; Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J Phys Condens Matter, 14 (11), pp. 2745-2779; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77 (18), pp. 3865-3868; Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041; Tran, V., Soklaski, R., Liang, Y., Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus (2014) Phys Rev B, 89 (23), p. 235319; Ferreira, F., Ribeiro, R., Improvements in the g w and bethe-salpeter-equation calculations on phosphorene (2017) Phys Rev B, 96 (11), p. 115431; 222461; http://hdl.handle.net/11407/4572

13
Academic Journal

Contributors: Departamento de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, Mérida Yuc., Mexico

Superior Title: Scopus

14
Academic Journal

Contributors: Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States

Superior Title: Scopus

Relation: Journal of Physical Chemistry C; http://hdl.handle.net/11407/2872

15
Academic Journal

Contributors: Rodríguez-Kessler, P.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico, Pan, S., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico, Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Cabellos, J.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico, Merino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico

Superior Title: Scopus

Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029376158&doi=10.1021%2facs.jpcc.7b05048&partnerID=40&md5=f446b3c3841d966d659f442e128b9a24; Journal of Physical Chemistry C; Journal of Physical Chemistry C Volume 121, Issue 35, 7 September 2017, Pages 19420-19427; Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170.; Bandyopadhyay, D., & Sen, P. (2010). Density functional investigation of structure and stability of ge n and GenNi (n = 1-20) clusters: Validity of the electron counting rule. Journal of Physical Chemistry A, 114(4), 1835-1842. doi:10.1021/jp905561n; Becerril, D., & Noguez, C. (2015). Adsorption of a methylthio radical on silver nanoparticles: Size dependence. Journal of Physical Chemistry C, 119(20), 10824-10835. doi:10.1021/jp509727q; Bernhardt, T. M., Socaciu-Siebert, L. D., Hagen, J., & Wöste, L. (2005). Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Applied Catalysis A: General, 291(1-2), 170-178. doi:10.1016/j.apcata.2005.02.041; Chen, M., Dyer, J. E., Li, K., & Dixon, D. A. (2013). Prediction of structures and atomization energies of small silver clusters, (ag)n, n < 100. Journal of Physical Chemistry A, 117(34), 8298-8313. doi:10.1021/jp404493w; Dong, R., Chen, X., Zhao, H., Wang, X., Shu, H., Ding, Z., & Wei, L. (2011). Structural, electronic and magnetic properties of AgnFe clusters (n ≤ 15): Local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(3) doi:10.1088/0953-4075/44/3/035102; Duarte, H. A., & Salahub, D. R. (1999). NO adsorption on pd clusters. A density functional study. Topics in Catalysis, 9(3-4), 123-133.; Fournier, R. (2001). Theoretical study of the structure of silver clusters. Journal of Chemical Physics, 115(5), 2165-2177. doi:10.1063/1.1383288; Frisch, M. J. (2009). Gaussian 09.; Gong, X., Ju, W., Li, T., Feng, Z., & Wang, Y. (2015). Spin–orbit splitting and magnetism of icosahedral M@Ag12 clusters (M = 3d and 4d atoms). Journal of Cluster Science, 26(3), 759-773. doi:10.1007/s10876-014-0737-x; Grönbeck, H., Hellman, A., & Gavrin, A. (2007). Structural, energetic, and vibrational properties of NOx adsorption on agn, n = 1-8. Journal of Physical Chemistry A, 111(27), 6062-6067. doi:10.1021/jp071117d; Gutsev, G. L., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2006). Dissociative and associative attachment of NO to iron clusters. Journal of Chemical Physics, 125(19) doi:10.1063/1.2378831; Harb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., . . . Félix, C. (2008). Optical absorption of small silver clusters: Agn, (n=4-22). Journal of Chemical Physics, 129(19) doi:10.1063/1.3013557; Harding, D., Mackenzie, S. R., & Walsh, T. R. (2006). Structural isomers and reactivity for Rh6 and rhe 6+. Journal of Physical Chemistry B, 110(37), 18272-18277. doi:10.1021/jp062603o; Hirabayashi, S., & Ichihashi, M. (2016). Reactions of ti- and V-doped cu cluster cations with nitric oxide and oxygen: Size dependence and preferential NO adsorption. Journal of Physical Chemistry A, 120(10), 1637-1643. doi:10.1021/acs.jpca.6b00206; Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864; Itoh, M., Kumar, V., Adschiri, T., & Kawazoe, Y. (2009). Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. Journal of Chemical Physics, 131(17) doi:10.1063/1.3187934; Jackschath, C., Rabin, I., & Schulze, W. (1992). Electron impact ionization of silver clusters agn, n≦36. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 22(2), 517-520. doi:10.1007/BF01426093; Janssens, E., Neukermans, S., Nguyen, H. M. T., Nguyen, M. T., & Lievens, P. (2005). Quenching of the magnetic moment of a transition metal dopant in silver clusters. Physical Review Letters, 94(11) doi:10.1103/PhysRevLett.94.113401; Janssens, E., Neukermans, S., Wang, X., Veldeman, N., Silverans, R. E., & Lievens, P. (2005). Stability patterns of transition metal doped silver clusters: Dopant- and size-dependent electron delocalization.European Physical Journal D, 34(1-3), 23-27. doi:10.1140/epjd/e2005-00106-9; Jensen, W. B. (2005). The origin of the 18-electron rule. Journal of Chemical Education, 82(1), 28.; Jin, Y., Maroulis, G., Kuang, X., Ding, L., Lu, C., Wang, J., . . . Ju, M. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3-20, Q = 0, ±1). Physical Chemistry Chemical Physics, 17(20), 13590-13597. doi:10.1039/c5cp00728c; Jin, Y., Tian, Y., Kuang, X., Zhang, C., Lu, C., Wang, J., . . . Ju, M. (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. Journal of Physical Chemistry A, 119(25), 6738-6745. doi:10.1021/acs.jpca.5b03542; Kohaut, S., & Springborg, M. (2016). Structural, energetic, and magnetic properties of agn-mRhm and agm rhn-m clusters with n ≤ 20 and m = 0,1. Journal of Cluster Science, 27(3), 913-933. doi:10.1007/s10876-016-1003-1; Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133-A1138. doi:10.1103/PhysRev.140.A1133; Kotsifa, A., Halkides, T. I., Kondarides, D. I., & Verykios, X. E. (2002). Activity enhancement of bimetallic rh-Ag/Al2O3 catalysts for selective catalytic reduction of NO by C3H6. Catalysis Letters, 79(1-4), 113-117. doi:10.1023/A:1015308408840; Koyasu, K., Akutsu, M., Mitsui, M., & Nakajima, A. (2005). Selective formation of MSi16 (M = sc, ti, and V). Journal of the American Chemical Society, 127(14), 4998-4999. doi:10.1021/ja045380t; Li, Y., Lyon, J. T., Woodham, A. P., Fielicke, A., & Janssens, E. (2014). The geometric structure of silver-doped silicon clusters. ChemPhysChem, 15(2), 328-336. doi:10.1002/cphc.201300944; Liu, X., Tian, D., Ren, S., & Meng, C. (2015). Structure sensitivity of NO adsorption-dissociation on pdn (n = 8, 13, 19, 25) clusters. Journal of Physical Chemistry C, 119(23), 12941-12948. doi:10.1021/acs.jpcc.5b01141; Matulis, V. E., & Ivaskevich, O. A. (2006). Comparative DFT study of electronic structure and geometry of copper and silver clusters: Interaction with NO molecule. Computational Materials Science, 35(3), 268-271. doi:10.1016/j.commatsci.2004.08.011; Mokkath, J. H., & Schwingenschlögl, U. (2014). Structural and optical properties of si-doped ag clusters. Journal of Physical Chemistry C, 118(9), 4885-4889. doi:10.1021/jp4112958; Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078k; Pereiro, M., & Baldomir, D. (2007). Structure of small silver clusters and static response to an external electric field. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3) doi:10.1103/PhysRevA.75.033202; Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103-106. doi:10.1126/science.291.5501.103; Piotrowski, M. J., Piquini, P., Zeng, Z., & Da Silva, J. L. F. (2012). Adsorption of NO on the rh 13, pd 13, ir 13, and pt 13 clusters: A density functional theory investigation. Journal of Physical Chemistry C, 116(38), 20540-20549. doi:10.1021/jp303167b; Ran, Q., Schmude Jr., R. W., Gingerich, K. A., Wilhite, D. W., & Kingcade Jr., J. E. (1993). Dissociation energy and enthalpy of formation of gaseous silver dimer. Journal of Physical Chemistry, 97(32), 8535-8540.; Rao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111(5), 1890-1904.; Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Stability of ni clusters and the adsorption of CH4: First-principles calculations. Journal of Physical Chemistry C, 119(22), 12378-12384. doi:10.1021/acs.jpcc.5b01738; Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Structural, electronic, and magnetic properties of AgnCo (n=1-9) clusters: A first-principles study. Computational and Theoretical Chemistry, 1066, 55-61. doi:10.1016/j.comptc.2015.05.009; Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2016). Structures and electronic properties of TinV (n = 1-16) clusters: First-principles calculations. Journal of Physical Chemistry A, 120(15), 2401-2407. doi:10.1021/acs.jpca.6b00224; Romo-Ávila, S. L., & Guirado-López, R. A. (2012). Adsorption of nitric oxide on small rh n± clusters: Role of the local atomic environment on the dissociation of the N-O bond. Journal of Physical Chemistry A, 116(3), 1059-1068. doi:10.1021/jp208847r; Sazama, P., Čapek, L., Drobná, H., Sobalík, Z., Dědeček, J., Arve, K., & Wichterlová, B. (2005). Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 232(2), 302-317. doi:10.1016/j.jcat.2005.03.013; Shimizu, K. -., Sugino, K., Sawabe, K., & Satsuma, A. (2009). Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry - A European Journal, 15(10), 2341-2351. doi:10.1002/chem.200802222; Simard, B., Hackett, P. A., James, A. M., & Langridge-Smith, P. R. R. (1991). The bond length of silver dimer. Chemical Physics Letters, 186(4-5), 415-422. doi:10.1016/0009-2614(91)90201-J; Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302; Sun, W. G., Wang, J. J., Lu, C., Xia, X. X., Kuang, X. Y., & Hermann, A. (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: A honeycomb-like Na20 cluster. Inorganic Chemistry, 56(3), 1241-1248. doi:10.1021/acs.inorgchem.6b02340; Tian, D., Zhang, H., & Zhao, J. (2007). Structure and structural evolution of agn (n = 3 - 22) clusters using a genetic algorithm and density functional theory method. Solid State Communications, 144(3-4), 174-179. doi:10.1016/j.ssc.2007.05.020; Torres, M. B., Aguilera-Granja, F., Balbás, L. C., & Vega, A. (2011). Ab initio study of the adsorption of NO on the rh 6 + cluster. Journal of Physical Chemistry A, 115(30), 8350-8360. doi:10.1021/jp202511w; Wang, Y., George, T. F., Lindsay, D. M., & Beri, A. C. (1987). The hückel model for small metal clusters. I. geometry, stability, and relationship to graph theory. The Journal of Chemical Physics, 86(6), 3493-3499.; Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/b508541a; Xia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. Journal of Physical Chemistry A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322; Yang, M., Jackson, K. A., & Jellinek, J. (2006). First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. Journal of Chemical Physics, 125(14) doi:10.1063/1.2351818; Zhang, M., Gu, X. -., Zhang, W. -., Zhao, L. -., He, L. -., & Luo, Y. -. (2010). Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage. Physica B: Condensed Matter, 405(2), 642-648. doi:10.1016/j.physb.2009.09.080; Zhang, W., Yan, S. -., Zhao, Z. -., & Zhang, H. -. (2012). Stabilities and fragmentation behaviors of ag nclusters(n = 234). Journal of Theoretical and Computational Chemistry, 11(5), 953-964. doi:10.1142/S0219633612500642; Zibordi-Besse, L., Tereshchuk, P., Chaves, A. S., & Da Silva, J. L. F. (2016). Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der waals corrections. Journal of Physical Chemistry A, 120(24), 4231-4240. doi:10.1021/acs.jpca.6b03467; http://hdl.handle.net/11407/4250; reponame:Repositorio Institucional Universidad de Medellín; instname:Universidad de Medellín