Showing 1 - 12 results of 12 for search 'MICROGRIDS' Narrow Search
1
Academic Journal

Superior Title: TecnoLógicas; Vol. 26 No. 56 (2023); e2565 ; TecnoLógicas; Vol. 26 Núm. 56 (2023); e2565 ; 2256-5337 ; 0123-7799

File Description: application/pdf; application/zip; text/xml; text/html

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2792; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2809; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2810; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2811; M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Trans Industr Inform, vol. 15, no. 3, pp. 1238–1250, Mar. 2019, https://doi.org/10.1109/TII.2018.2881540; M. Sandelic, S. Peyghami, A. Sangwongwanich, and F. Blaabjerg, “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112127, May. 2022, https://doi.org/10.1016/j.rser.2022.112127; M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, “Survey on microgrids with flexible boundaries: Strategies, applications, and future trends,” Electric Power Systems Research, vol. 205, p. 107765, Apr. 2022, https://doi.org/10.1016/j.epsr.2021.107765; V. Lavanya and N. S. Kumar, “A Review: Control Strategies for Power Quality Improvement in Microgrid,” International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 1–16, Mar. 2018, https://doi.org/10.20508/ijrer.v8i1.6643.g7290; K. M. Krishna, “Optimization analysis of Microgrid using HOMER - A case study,” in 2011 Annual IEEE India Conference, Dec. 2011, pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139566; S. Fazal, E. Haque, M. Taufiqul, and A. Gargoom, “Grid integration impacts and control strategies for renewable based microgrid,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103069, Mar. 2023, https://doi.org/10.1016/j.seta.2023.103069; J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems,” Energy Convers Manag, vol. 199, p. 112027, Nov. 2019, https://doi.org/10.1016/j.enconman.2019.112027; R. Hidalgo-Leon et al., “Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies, vol. 15, no. 5, p. 1776, Feb. 2022, https://doi.org/10.3390/en15051776; M. Ur Rashid, I. Ullah, M. Mehran, M. N. R. Baharom, and F. Khan, “Techno-Economic Analysis of Grid-Connected Hybrid Renewable Energy System for Remote Areas Electrification Using Homer Pro,” Journal of Electrical Engineering & Technology, vol. 17, no. 2, pp. 981–997, Mar. 2022, https://doi.org/10.1007/s42835-021-00984-2; P. Arévalo, A. A. Eras-Almeida, A. Cano, F. Jurado, and M. A. Egido-Aguilera, “Planning of electrical energy for the Galapagos Islands using different renewable energy technologies,” Electric Power Systems Research, vol. 203, p. 107660, Feb. 2022, https://doi.org/10.1016/j.epsr.2021.107660; S. Vendoti, M. Muralidhar, and R. Kiranmayi, “Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software,” Environ Dev Sustain, vol. 23, no. 1, pp. 351–372, Jan. 2021, https://doi.org/10.1007/s10668-019-00583-2; M. N. Uddin, M. M. Biswas, and S. Nuruddin, “Techno-economic impacts of floating PV power generation for remote coastal regions,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101930, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101930; S. Ladide, A. EL Fathi, M. Bendaoud, H. Hihi, and K. Faitah, “Flexible design and assessment of a stand-alone hybrid renewable energy system: a case study Marrakech, Morocco,” International Journal of Renewable Energy Research, vol. 9, no. 4, pp. 2003–2022, Dec. 2019, https://doi.org/10.20508/ijrer.v9i4.9936.g7806; S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, supplement 1, pp. 711–719, Mar. 2023, https://doi.org/10.1016/j.egyr.2022.11.065; F. A. Barrozo Budes, G. Valencia Ochoa, L. G. Obregon, A. Arango-Manrique, and J. R. Núñez Álvarez, “Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia,” Energies , vol. 13, no. 7, p. 1662, Apr. 2020, https://doi.org/10.3390/en13071662; D. Restrepo, B. Restrepo-Cuestas, and A. Trejos, “Microgrid analysis using HOMER: A case study,” DYNA (Colombia), vol. 85, no. 207, pp. 129–134, Oct. 2018, http://doi.org/10.15446/dyna.v85n207.69375; A. F. Torres Ome, A. L. Paque Salazar, and F. Díaz Franco, “Arquitecturas híbridas para la evaluación económica de un sistema de energía eólico-solar a partir del análisis de las variables meteorológicas en la ciudad de Neiva,” Cina Research, vol. 2, no. 3, pp. 14–27, Jan. 2018. https://journals.uninavarra.edu.co/index.php/cinaresearch/article/view/134; S. Ferahtia, H. Rezk, M. A. Abdelkareem, and A. G. Olabi, “Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm,” Applied Energy, vol. 306, pp. 118069, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118069; M. M. A. Seedahmed, M. A. M. Ramli, H. R. E. H. Bouchekara, M. S. Shahriar, A. H. Milyani, and M. Rawa, “A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 7, pp. 5183–5202, Jul. 2022, https://doi.org/10.1016/j.aej.2021.10.041; M. M. A. Seedahmed et al., “Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 8, pp. 6523–6540, Aug. 2022, https://doi.org/10.1016/j.aej.2021.12.013; S. Kumar, R. Sharma, S. Srinivasa Murthy, P. Dutta, W. He, and J. Wang, “Thermal analysis and optimization of stand-alone microgrids with metal hydride based hydrogen storage,” Sustainable Energy Technologies and Assessments, vol. 52, no. PA, p. 102043, Aug. 2022, https://doi.org/10.1016/j.seta.2022.102043; H. Mohammadpourkarbasi and S. Sharples, “Appraising the life cycle costs of heating alternatives for an affordable low carbon retirement development,” Sustainable Energy Technologies and Assessments, vol. 49, Jul. 2021, p. 101693, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101693; D. A. Figueroa Guerra, J. F. Culqui Tipan, M. D. Núñez Verdezoto, and O. D. Cruz Panchi, “Modelamiento de un sistema fotovoltaico conectado a la red considerando la variación de irradiancia solar en Homer Pro,” Ingeniería Investigación y Desarrollo, vol. 22, no. 1, pp. 60–71, Jun. 2022, https://doi.org/10.19053/1900771X.v22.n1.2022.14456; O. Tang, J. Rehme, and P. Cerin, “Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?,” Energy, vol. 241, no. 3, p. 122906, Feb. 2022, https://doi.org/10.1016/j.energy.2021.122906; C. Klemm and F. Wiese, “Indicators for the optimization of sustainable urban energy systems based on energy system modeling,” Energy Sustain Soc, vol. 12, no. 3, pp. 1–20, Jan. 2022, https://doi.org/10.1186/s13705-021-00323-3; A. K. Podder et al., “Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation,” Sustainability, vol. 14, no. 1, p. 166, Dec. 2021, https://doi.org/10.3390/su14010166; M. F. Ishraque et al., “Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies,” Sustainability, vol. 13, no. 22, p. 12734, Nov. 2021, https://doi.org/10.3390/su132212734; A. al Wahedi and Y. Bicer, “Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar,” Energy, vol. 243, p. 123008, Mar. 2022, https://doi.org/10.1016/j.energy.2021.123008; A. I. Omar, N. M. Khattab, and S. H. E. Abdel Aleem, “Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101701, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101701; M. S. Okundamiya, “Integration of photovoltaic and hydrogen fuel cell system for sustainable energy harvesting of a university ICT infrastructure with an irregular electric grid,” Energy Convers Manag, vol. 250, p. 114928, Dec. 2021, https://doi.org/10.1016/j.enconman.2021.114928; N. Majdi Nasab, J. Kilby, and L. Bakhtiaryfard, “Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand,” Energies, vol. 14, no. 12, p. 3636, Jun. 2021, https://doi.org/10.3390/en14123636; C. Ghenai, T. Salameh, and A. Merabet, “Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region,” Int J Hydrogen Energy, vol. 45, no. 20, pp. 11460–11470, Apr. 2020, https://doi.org/10.1016/j.ijhydene.2018.05.110; K. Rakhsia, M. Shezad, R. Yudhistira, N. Ruiz, A. Prasad, and G. Ropero, “Polygeneration System Design for Filipinas.” 2020. https://www.diva-portal.org/smash/get/diva2:1555554/FULLTEXT01.pdf; M. Hunt and A. Benigni, “Sensitivity Analysis of Optimal Battery Sizing to Differences in Microgrid Use,” in 2019 International Conference on Clean Electrical Power (ICCEP), Jul. 2019, pp. 444–449. https://doi.org/10.1109/ICCEP.2019.8890179; S. A. Luthfi, Novizon, and R. Fahreza, “Cost of Energy Sensitivity Analysis of PV/Diesel with Hydro Pumped Storage for Mentawai Microgrid System,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–5. https://doi.org/10.1109/GUCON50781.2021.9573985; M. Nur Sabrina Noorpi, K. Meng, X. Li, Z. Yang Dong, and W. Kong, “Zonal Formation for Multiple Microgrids using Load Flow Sensitivity Analysis,” in 2018 International Conference on Power System Technology (POWERCON), Nov. 2018, pp. 358–363. https://doi.org/10.1109/POWERCON.2018.8601576; P. Jagadeesh, M. Mohamed Thameem Ansari, and M. Saiveerraju, “Optimal Power Management of an Educational Institution Using HOMER,” Journal of Electrical Engineering and Technology, vol. 16, no. 4, pp. 1793–1798, Jul. 2021, https://doi.org/10.1007/s42835-021-00713-9; M. A. A. Rahmat et al., “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustainability (Switzerland), vol. 14, no. 20, Oct. 2022, https://doi.org/10.3390/su142013684; G. K. Suman, J. M. Guerrero, and O. P. Roy, “Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach,” Sustain Cities Soc, vol. 67, p. 102723, Apr. 2021, https://doi.org/10.1016/j.scs.2021.102723; J. O. Oladigbolu, M. A. M. Ramli, and Y. A. Al-Turki, “Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria,” Sustainability, vol. 11, no. 18, p. 4959, Sep. 2019, https://doi.org/10.3390/su11184959; M. H. Jahangir and R. Cheraghi, “Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load,” Sustainable Energy Technologies and Assessments, vol. 42, p. 100895, Dec. 2020, https://doi.org/10.1016/j.seta.2020.100895; F. Eze, J. Ogola, R. Kivindu, M. Egbo, and C. Obi, “Technical and economic feasibility assessment of hybrid renewable energy system at Kenyan institutional building: A case study,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101939, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101939; S. Sharma et al., “Modeling and sensitivity analysis of grid-connected hybrid green microgrid system,” Ain Shams Engineering Journal, vol. 13, no. 4, p. 101679, Jun. 2022, https://doi.org/10.1016/j.asej.2021.101679; S. Sharma and Y. R. Sood, “Optimal planning and sensitivity analysis of green microgrid using various types of storage systems,” Wind Engineering, vol. 45, no. 4, pp. 939–952, Aug. 2021, https://doi.org/10.1177/0309524X20941475; P. Malik, M. Awasthi, and S. Sinha, “Techno-economic and environmental analysis of biomass-based hybrid energy systems: A case study of a Western Himalayan state in India,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101189, Jun. 2021, https://doi.org/10.1016/j.seta.2021.101189; X. Yang, S. Liu, L. Zhang, J. Su, and T. Ye, “Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization,” Energy, vol. 206, p. 118078, Sep. 2020, https://doi.org/10.1016/j.energy.2020.118078; A. Oulis Rousis, D. Tzelepis, I. Konstantelos, C. Booth, and G. Strbac, “Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application,” Inventions, vol. 3, no. 3, p. 55, Aug. 2018, https://doi.org/10.3390/inventions3030055; D. I. Papaioannou, C. N. Papadimitriou, A. L. Dimeas, E. I. Zountouridou, G. C. Kiokes, and N. D. Hatziargyriou, “Optimization & Sensitivity Analysis of Microgrids using HOMER software- A Case Study,” in MedPower 2014, pp. 1–7, Nov. 2014. https://doi.org/10.1049/cp.2014.1668; V. V. V. S. N. Murty and A. Kumar, “Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 929–940, Sep. 2020, https://doi.org/10.35833/MPCE.2020.000273; H. Masrur, H. O. R. Howlader, M. Elsayed Lotfy, K. R. Khan, J. M. Guerrero, and T. Senjyu, “Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh,” Sustainability, vol. 12, no. 7, p. 2880, Apr. 2020, https://doi.org/10.3390/su12072880; T. Khan, M. Waseem, H. A. Muqeet, M. M. Hussain, M. Yu, and A. Annuk, “3E analyses of battery-assisted photovoltaic-fuel cell energy system: Step towards green community,” Energy Reports, vol. 8, pp. 184–191, Dec. 2022, https://doi.org/10.1016/j.egyr.2022.10.393; I. W. Son, Y. Jeong, S. Son, J. H. Park, and J. I. Lee, “Techno-economic evaluation of solar-nuclear hybrid system for isolated grid,” Appl Energy, vol. 306, no. PA, p. 118046, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118046; R. Chaurasia, S. Gairola, and Y. Pal, “Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies,” Sustainable Energy Technologies and Assessments, vol. 53, no. PD, p. 102787, Oct. 2022, https://doi.org/10.1016/j.seta.2022.102787; Congreso de la República de Colombia, “Ley 1715 del 13 de mayo de 2014,” 2014. http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf; Congreso de la República de Colombia, “Ley 2099 del 10 de julio de 2021,” 2021. https://dapre.presidencia.gov.co/normativa/normativa/LEY; HOMER Pro, “HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids,”, 2022. https://www.homerenergy.com/products/pro/index.html (accessed Jan. 26, 2023).; IDEAM, “Atlas Interactivo - Radiación IDEAM.”, Accessed: Sep. 27, 2022. http://atlas.ideam.gov.co/visorAtlasRadiacion.html; IDEAM, “Atlas Interactivo - Vientos - IDEAM.”, (accessed Sep. 27, 2022). http://atlas.ideam.gov.co/visorAtlasVientos.html; A. Singh, P. Baredar, and B. Gupta, “Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software,” Procedia Eng, vol. 127, pp. 743–750, 2015, https://doi.org/10.1016/j.proeng.2015.11.408; M. Nurunnabi, N. K. Roy, E. Hossain, and H. R. Pota, “Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh,” IEEE Access, vol. 7, pp. 150120–150140, Oct. 2019, https://doi.org/10.1109/ACCESS.2019.2945937; J. R. Baral, S. R. Behera, and T. Kisku, “Design and Economic Optimization of Community Load Based Microgrid System Using HOMER Pro,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Jul. 2022, pp. 1–5. https://doi.org/10.1109/ICICCSP53532.2022.9862479; M. Mehdi, N. Ammari, A. Alami Merrouni, H. El Gallassi, M. Dahmani, and A. Ghennioui, “An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations,” Renewable Energy, vol. 205, pp. 695–716, Mar. 2023, https://doi.org/10.1016/j.renene.2023.01.082; C. E. Tello-Argüelles, M. J. Espinosa-Trujillo, D. M. Medina Carril, “Evaluación del efecto de la radiación solar sobre la superficie de un sistema fotovoltaico,” in, ECORFAN, 2020, pp. 196–209. https://doi.org/10.35429/H.2020.5.196.209; S. A. Sadat, J. Faraji, M. Babaei, and A. Ketabi, “Techno‐economic comparative study of hybrid microgrids in eight climate zones of Iran,” Energy Sci Eng, vol. 8, no. 9, pp. 3004–3026, Sep. 2020, https://doi.org/10.1002/ese3.720; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565

2
Academic Journal

Superior Title: TecnoLógicas; Vol. 25 No. 53 (2022); e2358 ; TecnoLógicas; Vol. 25 Núm. 53 (2022); e2358 ; 2256-5337 ; 0123-7799

File Description: application/pdf; application/zip; text/xml; text/html

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2358/2399; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2358/2404; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2358/2405; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2358/2425; J. Gowdy, “Our hunter-gatherer future: Climate change, agriculture and uncivilization”, Futures, vol. 115, p. 102488, Jan. 2020. https://doi.org/10.1016/j.futures.2019.102488; J. Pardoe; K. Vincent; D. Conway, “How do staff motivation and workplace environment affect capacity of governments to adapt to climate change in developing countries?”, Environ. Sci. Policy, vol. 90, pp. 46 – 53, Dec. 2018. https://doi.org/10.1016/j.envsci.2018.09.020; W. Krauß; S. Bremer, “The role of place-based narratives of change in climate risk governance”, Clim. Risk Manag., vol. 28, p. 100221, 2020. https://doi.org/10.1016/j.crm.2020.100221; T. Abbasi; S. Abbasi, “Decarbonization of fossil fuels as a strategy to control global warming”, Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1828-1834, May. 2011. https://doi.org/10.1016/j.rser.2010.11.049; X. Zhou; T. Guo; Y. Ma, “An overview on microgrid technology”, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 2015, pp. 76–81. https://doi.org/10.1109/ICMA.2015.7237460; A. Hirsch; Y. Parag; J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues”, Renew. Sustain. Energy Rev., vol. 90, pp. 402-411, Jul. 2018. https://doi.org/10.1016/j.rser.2018.03.040; W. Guacaneme; A. F. Rodríguez; L. M. Gómez; F. Santamaría; C. Trujillo, “Development of a small-scale residential microgrid prototype”, TecnoLogicas, vol. 21, no. 43, pp. 107-125, Sep. 2018. https://doi.org/10.22430/22565337.1065; J. D. Garzón-Hidalgo; A. J. Saavedra-Montes, “A design methodology of microgrids for non-interconnected zones of Colombia”, TecnoLogicas, vol. 20, no. 39, pp. 39-53, May 2017. https://doi.org/10.22430/22565337.687; D. López-García; A. Arango-Manrique; S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm”, TecnoLogicas, vol. 21, no. 42, pp. 13-30, May 2018. https://doi.org/10.22430/22565337.774; M. Lonkar; S. Ponnaluri, “An overview of DC microgrid operation and control”, in IREC2015 The Sixth International Renewable Energy Congress, 2015, pp. 1–6. https://doi.org/10.1109/IREC.2015.7110892; A. Iovine; G. Damm; E. D. Santis; M. D. D. Benedetto, “Management controller for a DC MicroGrid integrating renewables and storages”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 90-95, Jul. 2017. https://doi.org/10.1016/j.ifacol.2017.08.016; D. Murillo-Yarce; A. Garcés-Ruiz; A. Escobar-Mejía, “Passivity based control for DC-microgrids with constant power terminals in island mode operation”, Rev. Fac. Ing. Univ. Antioquia, pp. 32-39, Mar. 2018. https://doi.org/10.17533/udea.redin.n86a05; H. Saadat, Power System Analysis. PSA Publishing LLC, 2011.; M. M. Hoogwijk, “On the global and regional potential of renewable energy sources”, (Ph.D. Thesis), at Faculteit Scheikunde, Universiteit Utrecht, Mar. 2004. https://www.osti.gov/etdeweb/biblio/20449848; S. Surender Reddy; P. R. Bijwe; A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period”, IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1440-1451, 2015. https://doi.org/10.1109/JSYST.2014.2325967; W. D. Giraldo Gómez, “Metodología para la gestión optima de energía en una micro red eléctrica interconectada”, (Tesis de Maestría), Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia., 2016.https://repositorio.unal.edu.co/handle/unal/57269; J. Lv; X. Wang; G. Wang; Y. Song, “Research on Control Strategy of Isolated DC Microgrid Based on SOC of Energy Storage System”, Electronics, vol. 10, no. 7, p. 834, Mar. 2021. https://doi.org/10.3390/electronics10070834; J. Giraldo; E. Mojica-Nava; N. Quijano, “Synchronization of isolated microgrids with a communication infrastructure using energy storage systems”, Int. J. Electr. Power Energy, vol. 63, pp. 71-82, Dec. 2014. https://doi.org/10.1016/j.ijepes.2014.05.042; J. Guo; T. Chen; B. Chaudhuri; S. Y. R. Hui, “Stability of Isolated Microgrids with Renewable Generation and Smart Loads”, IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2845-2854, 2020. https://doi.org/10.1109/TSTE.2020.2980276; L. Liang; Y. Hou; D. J. Hill, “Enhancing Flexibility of an Islanded Microgrid with Electric Springs”, IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 899-909, 2019. https://doi.org/10.1109/TSG.2017.2754545; D. J. Ryan; R. Razzaghi; H. D. Torresan; A. Karimi; B. Bahrani, “Grid-Supporting Battery Energy Storage Systems in Islanded Microgrids: A Data-Driven Control Approach”, IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 834-846, 2021. https://doi.org/10.1109/TSTE.2020.3022362; J. G. de Matos; F. S. F. e Silva; L. A. d. S. Ribeiro, “Power Control in AC Isolated Microgrids with Renewable Energy Sources and Energy Storage Systems”, IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3490-3498, 2015. https://doi.org/10.1109/TIE.2014.2367463; J. M. Guerrero; J. C. Vasquez; J. Matas; L. García de Vicuña; M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization”, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, 2011. https://doi.org/10.1109/TIE.2010.2066534; Z. Shuai; J. Fang; F. Ning; Z. J. Shen, “Hierarchical structure and bus voltage control of DC microgrid”, Renew. Sustain. Energy Rev., vol. 82, Part. 3, pp. 3670–3682, Feb. 2018. https://doi.org/10.1016/j.rser.2017.10.096; W. Li; Y. Gu; H. Yang; W. Sun; Y. Chi; X. He, “Hierarchical control of DC microgrids combining robustness and smartness”, CSEE Journal of Power and Energy Systems, vol. 6, no. 2, pp. 384-393, 2019. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8779793; A. A. Hamad; E. F. El-Saadany, “Multi-agent supervisory control for optimal economic dispatch in DC microgrids”, Sustain. Cities Soc., vol. 27, pp. 129-136, Nov. 2016. https://doi.org/10.1016/j.scs.2016.02.016; W. Gil- González; O. D. Montoya; E. Holguín; A. Garces; L. F. Grisales-Noreña, “Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model”, J. Energy Storage., vol. 21, pp. 1-8, Feb. 2019. https://doi.org/10.1016/j.est.2018.10.025; C. Li; F. de Bosio; F. Chen; S. K. Chaudhary; J. C. Vasquez; J. M. Guerrero, “Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 587–595, 2017. https://doi.org/10.1109/JESTPE.2016.2634026; R. Alzate; M. Mantilla, “Proposal for the optimal management of a DC microgrid”, X International Symposium on Electric Power Quality (SICEL 2021). Pereira - Colombia. October 2021.; V. Utkin; J. Guldner; J. Shi, Sliding Mode Control in Electromechanical Systems. Taylor & Francis, 1999.; D. C. Hernández Malaver; K. J. Muñoz Galvis, “Control droop de una microrred simple”, (Trabajo de grado), Facultad de Ingenierías Fisicomecánicas, Universidad Industrial de Santander. Bucaramanga, 2019. http://tangara.uis.edu.co/biblioweb/tesis/2019/178062.pdf; D. M. Hernández Vargas, “Despacho económico y su aplicación en microrredes eléctricas”, (Trabajo de grado), Facultad de Ingenierías Fisicomecánicas, Universidad Industrial de Santander. Bucaramanga, 2019. http://tangara.uis.edu.co/biblioweb/tesis/2019/175927.pdf; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2358

3
Academic Journal

Superior Title: TecnoLógicas; Vol. 25 No. 54 (2022); e2356 ; TecnoLógicas; Vol. 25 Núm. 54 (2022); e2356 ; 2256-5337 ; 0123-7799

File Description: application/pdf; application/zip; text/xml; text/html

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2356/2501; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2356/2504; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2356/2505; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2356/2520; J. Shen; C. Jiang; Y. Liu; X. Wang, “A Microgrid Energy Management System and Risk Management under an Electricity Market Environment”, IEEE Access, vol. 4, no. 1, pp. 2349–2356, Apr. 2016. https://doi.org/10.1109/ACCESS.2016.2555926; F. Z. Harmouch; N. Krami; N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster”, Sustain. Cities Soc., vol. 40, pp. 416–427, Jul. 2018. https://doi.org/10.1016/j.scs.2018.04.001; F. Valencia; D. Sáez; J. Collado; F. Ávila; A. Marquez; J. J. Espinosa, “Robust Energy Management System Based on Interval Fuzzy Models”, IEEE Trans. Control Syst. Technol., vol. 24, no. 1, pp. 140–157, Apr. 2016. https://doi.org/10.1109/TCST.2015.2421334; J. M. Raya-Armenta; N. Bazmohammadi; J. G. Avina-Cervantes; D. Sáez; J. C. Vasquez; J. M. Guerrero, “Energy management system optimization in islanded microgrids: An overview and future trends”, Renew. Sustain. Energy Rev., vol. 149, p. 111327, Oct. 2021. https://doi.org/10.1016/j.rser.2021.111327; M. W. Khan; J. Wang; L. Xiong; M. Ma, “Modelling and optimal management of distributed microgrid using multi-agent systems”, Sustain. Cities Soc., vol. 41, pp. 154–169, Aug. 2018. https://doi.org/10.1016/j.scs.2018.05.018; M. Marzband; F. Azarinejadian; M. Savaghebi; J. M. Guerrero, “An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with markov chain”, IEEE Syst. J., vol. 11, no. 3, pp. 1712–1722, Sep. 2017. https://doi.org/10.1109/JSYST.2015.2422253; K. Roy; K. K. Mandal; A. C. Mandal, “Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system”, Energy, vol. 167, pp. 402–416, Jan. 2019. https://doi.org/10.1016/j.energy.2018.10.153; A. Ghasemi; M. Enayatzare, “Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response”, Renew. Energy, vol. 123, pp. 460–474, Aug. 2018. https://doi.org/10.1016/j.renene.2018.02.072; S. M. Azzam; T. Elshabrawy; M. Ashour, “A Bi-level Framework for Supply and Demand Side Energy Management in an Islanded Microgrid”, IEEE Trans. Ind. Informatics, vol. 3203, pp. 1–12, Jan. 2022. https://doi.org/10.1109/TII.2022.3144154; B. Javanmard; M. Tabrizian; M. Ansarian; A. Ahmarinejad, “Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources”, J. Energy Storage, vol. 42, p. 102971, Oct. 2021. https://doi.org/10.1016/j.est.2021.102971; R. Saki; E. Kianmehr; E. Rokrok; M. Doostizadeh; R. Khezri; M. Shafie-khah, “Interactive Multi-level planning for energy management in clustered microgrids considering flexible demands”, Int. J. Electr. Power Energy Syst., vol. 138, p. 107978, Jun. 2022. https://doi.org/10.1016/j.ijepes.2022.107978; N. Eghbali; S. M. Hakimi; A. Hasankhani; G. Derakhshan; B. Abdi, “Stochastic energy management for a renewable energy based microgrid considering battery, hydrogen storage, and demand response”, Sustain. Energy, Grids Networks, vol. 30, p. 100652, Jun. 2022. https://doi.org/10.1016/j.segan.2022.100652; A. Sánchez Silvera; J. G. Guarnizo-Marín; E. F. Forero-García; D. Montenegro-Martínez, “Decentralized Energy Management System Based on Multi-agents to Operate Multiple Microgrids”, TecnoLógicas, vol. 24, no. 51, p. e1880, Jun. 2021. https://doi.org/10.22430/22565337.1880; M. F. H. Masum; P. Dwivedi; R. De La Torre, “Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia”, For. Policy Econ., vol. 124, p. 102381, Mar. 2021. https://doi.org/10.1016/j.forpol.2020.102381; A. Sagastume Gutiérrez; J. J. Cabello Eras; L. Hens; C. Vandecasteele, “The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia”, J. Clean. Prod., vol. 269, p. 122317Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122317; T. González Estrada; J. A. Valencia Marín; Unidad de Planeación Minero Energética(UPME), “Integración de las energías renovables no convencionales en Colombia”, Bogotá, Colombia, 2015. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf; AENE Consultoria, “Potencialidades de los cultivos energéticos y residuos agrícolas en Colombia: informe final”, Bogotá, Colombia, ANC-631 – 03, Jul. 2003. http://bdigital.upme.gov.co/handle/001/1287; Y. Zheng; B. M. Jenkins; K. Kornbluth; C. Træholt, “Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage”, Renew. Energy, vol. 123, pp. 204–217, Aug. 2018. https://doi.org/10.1016/j.renene.2018.01.120; A. Gonzalez; J.-R. Riba; B. Esteban; A. Rius, “Environmental and cost optimal design of a biomass–Wind–PV electricity generation system”, Renew. Energy, vol. 126, pp. 420–430, Oct. 2018. https://doi.org/10.1016/j.renene.2018.03.062; Y. Zheng; B. M. Jenkins; K. Kornbluth; A. Kendall; C. Træholt, “Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage”, Energy, vol. 155, pp. 620–629, Jul. 2018. https://doi.org/10.1016/j.energy.2018.05.036; Y. Zheng; B. M. Jenkins; K. Kornbluth; A. Kendall; C. Træholt, “Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty”, Appl. Energy, vol. 230, pp. 836–844, Nov. 2018. https://doi.org/10.1016/j.apenergy.2018.09.015; M. M. Morato; J. D. Vergara-Dietrich; P. R. C. Mendes; J. E. Normey-Rico; C. Bordons, “A Two-Layer EMS for Cooperative Sugarcane-based Microgrids”, Int. J. Electr. Power Energy Syst., vol. 118, p. 105752, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105752; N. Tomin et al., “Design and optimal energy management of community microgrids with flexible renewable energy sources”, Renew. Energy, vol. 183, pp. 903–921, Jan. 2022. https://doi.org/10.1016/j.renene.2021.11.024; D. Ribó-Pérez; Á. Herraiz-Cañete; D. Alfonso-Solar; C. Vargas-Salgado; T. Gómez-Navarro, “Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER”, Renew. Energy, vol. 174, pp. 501–512, Aug. 2021. https://doi.org/10.1016/j.renene.2021.04.083; P. Sun; T. Yun; Z. Chen, “Multi-objective robust optimization of multi-energy microgrid with waste treatment”, Renew. Energy, vol. 178, pp. 1198–1210, Nov. 2021. https://doi.org/10.1016/j.renene.2021.06.041; M. B. Eteiba; S. Barakat; M. M. Samy; W. I. Wahba, “Optimization of an off-grid PV/Biomass hybrid system with different battery technologies”, Sustain. Cities Soc., vol. 40, pp. 713–727, Jul. 2018. https://doi.org/10.1016/j.scs.2018.01.012; C. Wang; Y. Liu; X. Li; L. Guo; L. Qiao; H. Lu, “Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system”, Energy, vol. 97, pp. 90–104, Feb. 2016. https://doi.org/10.1016/j.energy.2015.12.099; P. C. Roy; A. Datta; N. Chakraborty, “An assessment of different biomass feedstocks in a downdraft gasifier for engine application”, Fuel, vol. 106, pp. 864–868, Apr. 2013. https://doi.org/10.1016/j.fuel.2012.12.053; P. C. Roy; A. Datta; N. Chakraborty, “Modelling of a downdraft biomass gasifier with finite rate kinetics in the reduction zone”, Int. J. Energy Res, vol. 33, no. 9, pp. 833–851, Jul. 2009. https://doi.org/10.1002/er.1517; S. Jarungthammachote; A. Dutta, “Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier”, Energy, vol. 32, no. 4, pp. 1660–1669, Sep. 2007. https://doi.org/10.1016/j.energy.2007.01.010; M. Grant; S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1.”, Mar. 2014. http://cvxr.com/cvx; S. Chalise; J. Sternhagen; T. M. Hansen; R. Tonkoski, “Energy management of remote microgrids considering battery lifetime”, Electr. J., vol. 29, no. 6, pp. 1–10, Jul. 2016. https://doi.org/10.1016/j.tej.2016.07.003; S. A. Mansouri; A. Ahmarinejad; M. S. Javadi; A. E. Nezhad; M. Shafie-Khah; J. P. Catalao, “Demand response role for enhancing the flexibility of local energy systems.”, in Distributed Energy Resources in Local Integrated Energy Systems, 1a ed., Amsterdam, Netherlandas: Elsevier, 2021, pp. 279–313. https://www.elsevier.com/books/distributed-energy-resources-in-local-integrated-energy-systems/graditi/978-0-12-823899-8; Zaheeruddin; M. Manas, “Renewable energy management through microgrid central controller design: An approach to integrate solar, wind and biomass with battery”, Energy Reports, vol. 1, pp. 156–163, Nov. 2015. https://doi.org/10.1016/j.egyr.2015.06.003; W. Shi; X. Xie; C. C. Chu; R. Gadh, “Distributed Optimal Energy Management in Microgrids”, IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1137–1146, May 2015. https://doi.org/10.1109/TSG.2014.2373150; M. Marzband; H. Alavi; S. S. Ghazimirsaeid; H. Uppal; T. Fernando, “Optimal energy management system based on stochastic approach for a home Microgrid with integrated responsive load demand and energy storage”, Sustain. Cities Soc., vol. 28, pp. 256–264, Jan. 2017. https://doi.org/10.1016/j.scs.2016.09.017; M. Elsied; A. Oukaour; T. Youssef; H. Gualous; O. Mohammed, “An advanced real time energy management system for microgrids”, Energy, vol. 114, pp. 742–752, Nov. 2016. https://doi.org/10.1016/j.energy.2016.08.048; S. Howell; Y. Rezgui; J.-L. Hippolyte; B. Jayan; H. Li, “Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources”, Renew. Sustain. Energy Rev., vol. 77, pp. 193–214, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.107; J. D. Martínez; K. Mahkamov; R. V. Andrade; E. E. Silva Lora, “Syngas production in downdraft biomass gasifiers and its application using internal combustion engines”, Renew. Energy, vol. 38, no. 1, pp. 1–9, Feb. 2012. https://doi.org/10.1016/j.renene.2011.07.035; F. Centeno; K. Mahkamov; E. E. Silva Lora; R. V. Andrade, “Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system”, Renew. Energy, vol. 37, no. 1, pp. 97–108, Jan. 2012. https://doi.org/10.1016/j.renene.2011.06.008; T. H. Jayah; L. Aye; R. J. Fuller; D. F. Stewart, “Computer simulation of a downdraft wood gasifier for tea drying”, Biomass and Bioenergy, vol. 25, no. 4, pp. 459–469, Oct. 2003. https://doi.org/10.1016/S0961-9534(03)00037-0; A. K. Sharma, “Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier”, Energy Convers. Manag., vol. 49, no. 4, pp. 832–842, Apr. 2008. https://doi.org/10.1016/j.enconman.2007.06.025; D. Buttsworth, “Spark Ignition Internal Combustion Engine Modelling using Matlab”, Toowoomba, Australia, Rep. TR-2002-02, Oct. 2002. http://www.usq.edu.au/; R. Macias N; F. Vélez; L. A. Blanco Leal, Generación de energía eléctrica mediante sistema híbrido Solar/Gasificación de residuos agroindustriales HIBRELEC. España: CARTYF, 2016. https://www.researchgate.net/publication/323706191%0D; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2356

4
Academic Journal

Superior Title: TecnoLógicas; Vol. 24 No. 51 (2021); e1880 ; TecnoLógicas; Vol. 24 Núm. 51 (2021); e1880 ; 2256-5337 ; 0123-7799

File Description: application/pdf; application/zip; text/xml; text/html

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2014; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2051; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2052; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880/2066; J. D. Garzón-Hidalgo; A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, pp. 39–53, May 2017. https://doi.org/10.22430/22565337.687; D. López-García; A. Arango-Manrique; S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, May. 2018. https://doi.org/10.22430/22565337.774; C.-H. Yoo; I. Y. Chung; H. J. Lee; S. S. Hong, “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, Sep. 2013. https://doi.org/10.3390/en6104956; J. M. Ramírez Scarpetta et al., “Control en Microrredes de A. C: Control Jerárquico, Tecnologías y Normativa,”, Comité de Estudios C6 - Sistemas de distribución y generación dispersa, Documento técnico, Bogotá, 2020. http://www.cigrecolombia.org/Documents/Documentos-t%C3%A9cnicos/DT-6.2-Control%20en%20Microrredes%20de%20Corriente%20Alterna%20Control%20Jer%C3%A1rquico,%20Tecnolog%C3%ADas%20y%20Normativa.pdf; M. N. Mojdehi; N. Webb, “Microgrid interoperability: First steps from policy to implementation,” in 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT, Minneapolis, 2016. https://doi.org/10.1109/ISGT.2016.7781025; L. Che; M. Khodayar; M. Shahidehpour, “Only connect: Microgrids for distribution system restoration,” IEEE Power Energy Mag., vol. 12, no. 1, pp. 70–81, Jan. 2014. https://doi.org/10.1109/MPE.2013.2286317; A. Majzoobi; A. Khodaei, “Application of Microgrids in Supporting Distribution Grid Flexibility,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3660–3669, Sep. 2017. https://doi.org/10.1109/TPWRS.2016.2635024; D. Wu; F. Tang; T. Dragicevic; J. C. Vasquez; J. M. Guerrero, “A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1156–1166, May. 2015. https://doi.org/10.1109/TSG.2014.2377018; J. A. P. Lopes; C. L. Moreira; A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006. https://doi.org/10.1109/TPWRS.2006.873018; H. Mahmood; D. Michaelson; J. Jiang, “Strategies for Independent Deployment and Autonomous Control of PV and Battery Units in Islanded Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015. https://doi.org/10.1109/JESTPE.2015.2413756; T. L. Vandoorn; J. C. Vasquez; J. De Kooning; J. M. Guerrero; L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies,” IEEE Ind. Electron. Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013. https://doi.org/10.1109/MIE.2013.2279306; J. Rocabert; A. Luna; F. Blaabjerg; P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2199334; D. Wu; F. Tang; T. Dragicevic; J. C. Vasquez; J. M. Guerrero, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882–892, Dec. 2014. https://doi.org/10.1109/TEC.2014.2358612; A. H. Fathima; K. Palanisamy, “Optimization in microgrids with hybrid energy systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May. 2015. https://doi.org/10.1016/J.RSER.2015.01.059; G. Zhabelova; V. Vyatkin; V. N. Dubinin, “Toward Industrially Usable Agent Technology for Smart Grid Automation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2629–2641, Apr. 2015. https://doi.org/10.1109/TIE.2014.2371777; P. H. Nguyen; W. L. Kling; P. F. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-Based Functions in Smart Grids,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 568–576, Mar. 2013. https://doi.org/10.1109/TSG.2012.2236657; L. Hernandez et al., “A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants,” IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013. https://doi.org/10.1109/MCOM.2013.6400446; C. P. Nguyen; A. J. Flueck, “Agent Based Restoration With Distributed Energy Storage Support in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029–1038, Jun. 2012. https://doi.org/10.1109/TSG.2012.2186833; B. Ramachandran; S. K. Srivastava; C. S. Edrington; D. A. Cartes, “An Intelligent Auction Scheme for Smart Grid Market Using a Hybrid Immune Algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011. https://doi.org/10.1109/TIE.2010.2102319; H. Dagdougui; R. Sacile, “Decentralized Control of the Power Flows in a Network of Smart Microgrids Modeled as a Team of Cooperative Agents,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 510–519, Mar. 2014. https://doi.org/10.1109/TCST.2013.2261071; C. M. Colson; M. H. Nehrir, “Comprehensive Real-Time Microgrid Power Management and Control With Distributed Agents,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 617–627, Mar. 2013. https://doi.org/10.1109/TSG.2012.2236368; O. Palizban; K. Kauhaniemi; J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014. https://doi.org/10.1016/J.RSER.2014.01.016; W. Liu; W. Gu; W. Sheng; X. Meng; Z. Wu; W. Chen, “Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 446–456, Apr. 2014. https://doi.org/10.1109/TSTE.2013.2293148; Q. Li; F. Chen; M. Chen; J. M. Guerrero; D. Abbott, “Agent-Based Decentralized Control Method for Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 637-649, Mar. 2016. https://doi.org/10.1109/TSG.2015.2422732; C.-X. Dou; B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 771–778, Jan. 2013. https://doi.org/10.1109/TSG.2012.2230197; N. L. Diaz; J. G. Guarnizo; M. Mellado; J. C. Vasquez; J. M. Guerrero, “A Robot-Soccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2572262; A. Kantamneni; L. E. Brown; G. Parker; W. W. Weaver, “Survey of multi-agent systems for microgrid control,” Eng. Appl. Artif. Intell., vol. 45, pp. 192–203, Oct. 2015. https://doi.org/10.1016/J.ENGAPPAI.2015.07.005; M. Baun; M. A. Awadallah; B. Venkatesh, “Implementation of load-curve smoothing algorithm based on battery energy storage system,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, 2016, pp. 1–5. https://doi.org/10.1109/CCECE.2016.7726668; T. S. Mahmoud; D. Habibi; O. Bass, “Fuzzy logic for smart utilisation of Storage Devices in a typical microgrid,” in 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, 2012, pp. 1–6. https://doi.org/10.1109/ICRERA.2012.6477333; K. Alqunun; P. A. Crossley, “Rated energy impact of BESS on total operation cost in a microgrid,” in 2016 IEEE Smart Energy Grid Engineering (SEGE), Oshawa, 2016, pp. 292–300. https://doi.org/10.1109/SEGE.2016.7589540; R. Morsali; S. Ghorbani; R. Kowalczyk; R. Unland, “On Battery Management Strategies in Multi-agent Microgrid Management,” in Business Information Systems Workshops, Springer, Cham. 2017, pp. 191–202. https://doi.org/10.1007/978-3-319-69023-0_17; M. Batool; F. Shahnia; S. M. Islam, “Multi-level supervisory emergency control for operation of remote area microgrid clusters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1210–1228, Jan. 2019. https://doi.org/10.1007/s40565-018-0481-6; F. Shahnia; S. Bourbour; A. Ghosh, “Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 969–983, Mar. 2017. https://doi.org/10.1109/TSG.2015.2477845; E. Bullich-Massagué; F. Díaz-González; M. Aragüés-Peñalba; F. Girbau-Llistuella; P. Olivella-Rosell; A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340–361, Feb. 2018. https://doi.org/10.1016/j.apenergy.2017.12.048; M. Wooldridge, “Intelligent Agents: The Key Concepts,” Multi-Agent Systems and Applications II, Springer, Berlin, Heidelberg, 2002, pp. 3–43. https://doi.org/10.1007/3-540-45982-0_1; C. S. Karavas; G. Kyriakarakos; K. G. Arvanitis; G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manag., vol. 103, pp. 166–179, Oct. 2015. https://doi.org/10.1016/j.enconman.2015.06.021; D. Montenegro; M. Hernandez; R. Dugan, OpenDSS-G (fomer DSSim-PC), 2013. https://sourceforge.net/projects/dssimpc/?source=navbar; F. Shahnia; S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, Sep. 2017. https://doi.org/10.1016/j.segan.2017.06.002; J. A. Gil Tobón; M. A. Muñoz Marín, “Curva de Cargabilidad,” Derivado del curso de Instalaciones Eléctricas Industriales II, pp. 1–5, 2013. https://es.scribd.com/document/143045728/Curva-de-Cargabilidad-Articulo; F. Z. Harmouch; N. Krami; N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster,” Sustain. Cities Soc., vol. 40, pp. 416–427, Jul. 2018. https://doi.org/10.1016/j.scs.2018.04.001; IDEAM, “Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia.” 2015. http://atlas.ideam.gov.co/visorAtlasRadiacion.html; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1880

5
Academic Journal

Superior Title: TecnoLógicas; Vol. 22 No. 46 (2019); 195-212 ; TecnoLógicas; Vol. 22 Núm. 46 (2019); 195-212 ; 2256-5337 ; 0123-7799

File Description: application/pdf; text/html; text/xml

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1489/1367; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1489/1431; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1489/1450; N. K. Roy and H. R. Pota, “Current Status and Issues of Concern for the Integration of Distributed Generation Into Electricity Networks,” IEEE Syst. J., vol. 9, no. 3, pp. 933–944, Sep. 2015. https://doi.org/10.1109/JSYST.2014.2305282; Ley 1715 de 2014. No. 49.150, 2014.; [En linea], Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html; Ministerio de Minas y Energía, Resolución No. 30 de febrero de 2018. 2018. [En linea], Disponible en; R. Huang, G. Cokkinides, C. Hedrington, and S. A. P. Meliopoulos, “Distribution System Distributed Quasi-Dynamic State Estimator,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2761–2770, Nov. 2016.; F. Adinolfi, G. M. Burt, P. Crolla, F. D’Agostino, M. Saviozzi, and F. Silvestro, “Distributed Energy Resources Management in a Low-Voltage Test Facility,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2593–2603, Apr. 2015.; D. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30; May 2018. https://doi.org/10.22430/22565337.774; J. D. Marín-Jiménez, S. X. Carvajal-Quintero, and J. M. Guerrero, “Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógicas, vol. 21, no. 42, pp. 169–185, May 2018. https://doi.org/10.22430/22565337.786; J. R. Rice, “Spatio-temporal Complexity of Slip on a Fault,” J. Geophys. Res., vol. 98, no. B6, pp. 9885–9907, June. 1993. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.6067&rep=rep1&type=pdf; G. Zöller, M. Holschneider, and Y. Ben-Zion, “Quasi-static and Quasi-dynamic Modeling of Earthquake Failure at Intermediate Scales,” Pure Appl. Geophys., vol. 161, no. 9–10, pp. 2103–2118, Aug. 2004.; R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, “A Multi-Timescale Quasi-Dynamic Model for Simulation of Cascading Outages,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3189–3201, Jul. 2016.; A. H. Habib, V. R. Disfani, J. Kleissl, and R. A. de Callafon, “Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using mixed-integer linear programming,” in 2016 IEEE Conference on Control Applications (CCA),Buenos aires, 2016, pp. 1476–1481. https://doi.org/10.1109/CCA.2016.7588009; Z. Tian, B. Perers, S. Furbo, and J. Fan, “Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating,” Energy, vol. 142, pp. 130–138, Jan. 2018. https://doi.org/10.1016/j.energy.2017.09.135; W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), Columbus OH, 2001. pp. 908–912. https://doi.org/10.1109/PESW.2001.916993; S. R. Castaño, Redes de Distribución de Energía, 3rd. Manizales: Universidad Nacional de Colombia, 2004.; A. Pedraza, D. Reyes, C. Gómez, and F. Santamaría, “Impacto de la Generación Distribuida sobre el Esquema de Protecciones en una Red de Distribución,” in Seminario Internacional en Fuentes Alternativas de Energía y Eficiencia Energética, Bogotá 2013. p. 172.; PowerFactory DIgSilent, “Digsilent powerfactory 15 user manual,” 2014.; O. D. Montoya-Giraldo, C. A. Ramírez- Vanegas, and L. F. Grisales-Noreña, “Localización y Dimensionamiento Óptimo de Generadores Distribuidos y Bancos de Condensadores en Sistemas de Distribución,” Sci. Tech., vol. 23, no. 03, pp. 308–314, Sep. 2018.; V. Marzano, A. Papola, F. Simonelli, and M. Papageorgiou, “A Kalman Filter for Quasi-Dynamic o-d Flow Estimation/Updating,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3604–3612, Nov. 2018. https://doi.org/10.1109/TITS.2018.2865610; Z. Pan, J. Wu, H. Sun, Q. Guo, and M. Abeysekera, “Quasi-dynamic interactions and security control of integrated electricity and heating systems in normal operations,” CSEE J. Power Energy Syst., vol. 5, no. 1, pp. 120–129, Mar. 2019. https://doi.org/10.17775/CSEEJPES.2018.00240; X. Qin, X. Shen, H. Sun, and Q. Guo, “A Quasi-Dynamic Model and Corresponding Calculation Method for Integrated Energy System with Electricity and Heat,” Energy Procedia, vol. 158, pp. 6413–6418, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.01.195; D. Raoofsheibani, D. Henschel, P. Hinkel, M. Ostermann, W. H. Wellssow, and U. Spanel, “Quasi-dynamic model of VSC-HVDC transmission systems for an operator training simulator application,” Electr. Power Syst. Res., vol. 163 part B., pp. 733–743, Oct. 2018. https://doi.org/10.1016/j.epsr.2017.08.029; DIgSILENT, “PowerFactory 2018,” 2018. https://www.digsilent.de/en/downloads.html; J. Núñez López, “Comparación Técnica entre los Programas de Simulación de Sistemas de Potencia DIgSILENT PowerFactory y PSS/E,” Tesis pregrado, Facultad de ingeniería, Escuela Politecnica Nacional, 2015. [En líne], Disponible en: https://bibdigital.epn.edu.ec/handle/15000/10316; L. F. Gaitan, J. D. Gómez, and E. R. Trujillo, “Simulation of a 14 Node IEEE System with Distributed Generation Using Quasi-dynamic Analysis,” in Communications in Computer and Information Science, 2018. pp. 497–508.; L. F. Gaitán-Cubides, J. D. Gómez-Ariza, and E. Rivas-Trujillo, “Análisis cuasi-dinámico de la inclusión de generación distribuida en sistemas eléctricos de potencia, caso de estudio: Sistema IEEE de 30 nodos,” Rev. UIS Ing., vol. 17, no. 2, pp. 41–54, Mar. 2018. https://doi.org/10.18273/revuin.v17n2-2018004; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1489

6
Academic Journal

Superior Title: TecnoLógicas; Vol. 26 No. 58 (2023); e2656 ; TecnoLógicas; Vol. 26 Núm. 58 (2023); e2656 ; 2256-5337 ; 0123-7799

File Description: application/pdf

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2656/2928; A. Majid et al., “Renewable energy sources-based hybrid microgrid system for off-grid electricity solution for rural communities,” Energy Science and Engineering, pp. 1-14, Jul. 2023. https://doi.org/10.1002/ese3.1535; S. H. Mirbarati, N. Heidari, A. Nikoofard, M. S. S. Danish, and M. Khosravy, “Techno-Economic-Environmental Energy Management of a Micro-Grid: A Mixed-Integer Linear Programming Approach,” Sustainability, vol. 14, no. 22, p. 15036, Nov. 2022. https://doi.org/10.3390/su142215036; B. Lasseter, "Microgrids [distributed power generation]," in Power Engineering Society Winter Meeting. Conference Proceedings, Columbus, USA, 2001, pp. 146-149. https://doi.org/10.1109/PESW.2001.917020; M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, Mar. 2019. https://doi.org/10.1109/TII.2018.2881540; M. Uddin, H. Mo, D. Dong, S. Elsawah, J. Zhu, and J. M. Guerrero, “Microgrids: A review, outstanding issues and future trends,” Energy Strategy Reviews, vol. 49, p. 101127, Sep. 2023. https://doi.org/10.1016/j.esr.2023.101127; R. Elazab, A. T. Abdelnaby, H. E. Keshta, and A. A. Ali, “Optimal techno-economic feasibility analysis of a grid-tied microgrid considering demand response strategy,” Electric Power Systems Research, vol. 224, p. 109768, Nov. 2023. https://doi.org/10.1016/j.epsr.2023.109768; Y. Parag, and M. Ainspan, “Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment,” Energy for Sustainable Development, vol. 52, pp. 72–81, Oct. 2019. https://doi.org/10.1016/j.esd.2019.07.003; J. M. Rey et al., “A Review of Microgrids in Latin America: Laboratories and Test Systems,” IEEE Latin America Transactions, vol. 20, no. 6, pp. 1000–1011, Jun. 2022. https://doi.org/10.1109/TLA.2022.9757743; M. A. Hossain, H. R. Pota, M. J. Hossain, and F. Blaabjerg, “Evolution of microgrids with converter-interfaced generations: Challenges and opportunities,” International Journal of Electrical Power and Energy Systems, vol. 109. pp. 160–186, Jul. 2019. https://doi.org/10.1016/j.ijepes.2019.01.038; S. Ullah, A. M. A. Haidar, P. Hoole, H. Zen, and T. Ahfock, “The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids,” Journal of Cleaner Production, vol. 273, p. 122777, Nov. 2020. https://doi.org/10.1016/j.jclepro.2020.122777; S. Wang, X. Zhang, L. Wu, and S. Sun, “New metrics for assessing the performance of multi-microgrid systems in stand-alone mode,” International Journal of Electrical Power and Energy Systems, vol. 98, pp. 382–388, Jun. 2018. https://doi.org/10.1016/j.ijepes.2017.12.002; F. Rebolledo, P. Mendoza-Araya, G. Carvajal, and G. Ramírez, “Performance evaluation of different solar modules and mounting structures on an on-grid photovoltaic system in south-central Chile,” Energy for Sustainable Development, vol. 68, pp. 65–75, Jun. 2022. https://doi.org/10.1016/j.esd.2022.02.003; H. Zhao et al., “Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method,” Energy, vol. 240, p. 122830, Feb. 2022. https://doi.org/10.1016/j.energy.2021.122830; M. Uddin, M. F. Romlie, and M. F. Abdullah, “Performance assessment and economic analysis of a gas-fueled islanded microgrid - A Malaysian case study,” Infrastructures, vol. 4, no. 4, p. 61, Sep. 2019. https://doi.org/10.3390/infrastructures4040061; A. Haffaf, F. Lakdja, and D. O. Abdeslam, “Experimental performance analysis of an installed microgrid-based PV / battery / EV grid-connected system,” Clean energy, vol. 6, no. 4, pp. 599–618, Jul. 2022. https://doi.org/10.1093/ce/zkac035; Z. M. Ali, M. Al-dhaifallah, and T. Komikawa, “Optimal operation and scheduling of a multi-generation microgrid using grasshopper optimization algorithm with cost reduction,” Soft Computing, vol. 26, pp. 9369–9384, Jul. 2022. https://doi.org/10.1007/s00500-022-07282-7; M. F. Ishraque, A. Rahman, S. A. Shezan, and G. M. Shafiullah, “Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode,” Sustainability, vol. 14, no. 23, p. 15504, Nov. 2022. https://doi.org/10.3390/su142315504; M. Ibrahim, and A. Alkhraibat, “Resiliency assessment of microgrid systems,” Applied Sciences, vol. 10, no. 5, p. 1824, Mar. 2020. https://doi.org/10.3390/app10051824; A. Kwasinski, “Quantitative evaluation of DC microgrids availability: Effects of system architecture and converter topology design choices,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 835–851, Mar. 2011. https://doi.org/10.1109/TPEL.2010.2102774; S. Wang, Z. Li, L. Wu, M. Shahidehpour, and Z. Li, “New metrics for assessing the reliability and economics of microgrids in distribution system,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2852–2861, Aug. 2013. https://doi.org/10.1109/TPWRS.2013.2249539; D. Pramangioulis, K. Atsonios, N. Nikolopoulos, D. Rakopoulos, P. Grammelis, and E. Kakaras, “A methodology for determination and definition of key performance indicators for smart grids development in island energy systems,” Energies, vol. 12, no. 2, p. 242, Jan. 2019. https://doi.org/10.3390/en12020242; D. Gutiérrez-Oliva, A. Colmenar-Santos, and E. Rosales-Asensio, “A Review of the State of the Art of Industrial Microgrids Based on Renewable Energy,” Electronics, vol. 11, no. 7, p. 1002, Mar. 2022. https://doi.org/10.3390/electronics11071002; S. D. Rodrigues, and V. J. Garcia, “Transactive energy in microgrid communities: A systematic review,” Renewable and Sustainable Energy Reviews, vol. 171, p. 112999, Jan. 2023. https://doi.org/10.1016/j.rser.2022.112999; B. Sahoo, S. K. Routray, and P. K. Rout, “AC, DC, and hybrid control strategies for smart microgrid application: A review,” International Transactions on Electrical Energy Systems, vol. 31, no. 1, p. e12683, Oct. 2020. https://doi.org/10.1002/2050-7038.12683; A. Rathore, A. Kumar, and N. P. Patidar, “Techno-socio-economic and sensitivity analysis of standalone micro-grid located in central India,” International Journal of Ambient Energy, vol. 44, no. 1, Feb. 2023. https://doi.org/10.1080/01430750.2023.2176922; J. Tello-Maita and A. Marulanda-Guerra, “Optimization models for power systems in the evolution to smart grids: A review,” DYNA, vol. 84, no. 202, pp. 102–111, Jul. 2017. https://doi.org/10.15446/dyna.v84n202.63354; S. Sinha, and S. S. Chandel, “Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 755–769, Oct. 2015. https://doi.org/10.1016/j.rser.2015.05.040; G. Bianco, B. Bonvini, S. Bracco, F. Delfino, P. Laiolo, and G. Piazza, “Key performance indicators for an energy community based on sustainable technologies,” Sustainability, vol. 13, no. 16, p. 8789, Aug. 2021. https://doi.org/10.3390/su13168789; J. Nelson, N. G. Johnson, K. Fahy, and T. A. Hansen, “Statistical development of microgrid resilience during islanding operations,” Applied Energy, vol. 279, p. 115724, Dec. 2020. https://doi.org/10.1016/j.apenergy.2020.115724; W. Yang, S. N. Sparrow, M. Ashtine, D. C. H. Wallom, and T. Morstyn, “Resilient by design: Preventing wildfires and blackouts with microgrids,” Applied Energy, vol. 313, p. 118793, May. 2022. https://doi.org/10.1016/j.apenergy.2022.118793; A. Hosseinzadeh, A. Zakariazadeh, and S. Ranjbar, “Fast restoration of microgrids using online evaluation metrics considering severe windstorms,” Sustainable Energy, Grids and Networks, vol. 26, p. 100458, Jun. 2021. https://doi.org/10.1016/j.segan.2021.100458; L. Sun, X. Zhao, and Y. Lv, “Stability Analysis and Performance Improvement of Power Sharing Control in Islanded Microgrids,” IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4665–4676, Nov. 2022. https://doi.org/10.1109/TSG.2022.3178593; P. Stanchev, G. Vacheva, and N. Hinov, “Evaluation of Voltage Stability in Microgrid-Tied Photovoltaic Systems,” Energies, vol. 16, no. 13, p. 4895, Jun. 2023. https://doi.org/10.3390/en16134895; A. A. Yahaya, M. AlMuhaini, and G. T. Heydt, “Optimal design of hybrid DG systems for microgrid reliability enhancement,” IET Generation, Transmission and Distribution, vol. 14, no. 5, pp. 816–823, Mar. 2020. https://doi.org/10.1049/iet-gtd.2019.0277; I. Akhtar, A. Altamimi, Z. A. Khan, B. Alojaiman, M. Alghassab, and S. Kirmani, “Reliability Analysis and Economic Prospect of Wind energy sources incorporated Microgrid system for Smart Buildings Environment,” IEEE Access, vol. 11, pp. 62013–62027, Jun. 2023. https://doi.org/10.1109/ACCESS.2023.3287832; M. Mormina, “Science, Technology and Innovation as Social Goods for Development: Rethinking Research Capacity Building from Sen’s Capabilities Approach,” Science and Engineering Ethics, vol. 25, pp. 671–692, Mar. 2019. https://doi.org/10.1007/s11948-018-0037-1; C. E. Isaza, P. Herrera Kit, J. C. Lozano Herrera, K. Mendez and A. Balanzo “Capacity: A Literature Review and a Research Agenda,” SSRN Electronic Journal, pp. 1–22, Aug. 2015. https://doi.org/10.2139/ssrn.2824486; R. Srivastava, M. Amir, F. Ahmad, S. K. Agrawal, A. Dwivedi, and A. K. Yadav, “Performance evaluation of grid connected solar powered microgrid: A case study,” Frontiers in Energy Research, vol. 10, Nov. 2022. https://doi.org/10.3389/fenrg.2022.1044651; S. El Hassani, F. Oueslati, O. Horma, D. Santana, M. A. Moussaoui, and A. Mezrhab, “Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco,” Journal of Energy Storage, vol. 68, p. 107853, Sep. 2023. https://doi.org/10.1016/j.est.2023.107853; N. C. Alluraiah, and P. Vijayapriya, “Optimization, Design and Feasibility Analysis of a Grid-Integrated Hybrid AC/DC Microgrid system for Rural Electrification,” IEEE Access, vol. 11, pp. 67013-67029, Jun. 2023. https://doi.org/10.1109/access.2023.3291010; S. Alrashed, “Key performance indicators for Smart Campus and Microgrid,” Sustainable Cities and Society, vol. 60, P. 102264, Sep. 2020. https://doi.org/10.1016/j.scs.2020.102264; M. S. Javed, J. Jurasz, M. McPherson, Y. Dai, and T. Ma, “Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability,” Renewable and Sustainable Energy Reviews, vol. 164, p. 112516, Aug. 2022. https://doi.org/10.1016/j.rser.2022.112516; J. R. Araújo, E. N. M. Silva, A. B. Rodrigues, and M. G. da Silva, “Assessment of the Impact of Microgrid Control Strategies in the Power Distribution Reliability Indices,” Journal of Control, Automation and Electrical Systems, vol. 28, pp. 271–283, Jan. 2017. https://doi.org/10.1007/s40313-017-0299-x; A. Gholami, T. Shekari, M. H. Amirioun, F. Aminifar, M. H. Amini, and A. Sargolzaei, “Toward a consensus on the definition and taxonomy of power system resilience,” IEEE Access, vol. 6, pp. 32035–32053, Jun. 2018. https://doi.org/10.1109/ACCESS.2018.2845378; S. M. M. Amin, A. Hasnat, and N. Hossain, “Designing and Analysing a PV/Battery System via New Resilience Indicators,” Sustainability, vol. 15, no. 13, p. 10328, Jun. 2023. https://doi.org/10.3390/su151310328; F. H. Jufri, V. Widiputra, and J. Jung, “State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies,” Applied Energy, vol. 239, pp. 1049–1065, Apr. 2019. https://doi.org/10.1016/j.apenergy.2019.02.017; J. J. He, D. L. Van Bossuyt, and A. Pollman, “Experimental Validation of Systems Engineering Resilience Models for Islanded Microgrids,” Systems, vol. 10, no. 6, p. 245, Dec. 2022. https://doi.org/10.3390/systems10060245; A. Dehghani, M. Sedighizadeh, and F. Haghjoo, “An overview of the assessment metrics of the concept of resilience in electrical grids,” International Transactions on Electrical Energy Systems, vol. 31, no. 12, p. e13159, Oct. 2021. https://doi.org/10.1002/2050-7038.13159; K. H. Anderson, N. A. DiOrio, D. S. Cutler, and R. S. Butt, “Increasing Resiliency Through Renewable Energy Microgrids,” International Journal of Energy Sector Management, vol. 2, no. 2, Aug. 2017. https://www.osti.gov/biblio/1389210; X. Zhan, T. Xiang, H. Chen, B. Zhou, and Z. Yang, “Vulnerability assessment and reconfiguration of microgrid through search vector artificial physics optimization algorithm,” International Journal of Electrical Power and Energy Systems, vol. 62, pp. 679–688, Nov. 2014. https://doi.org/10.1016/j.ijepes.2014.05.024; L. Yang, S. Fan, G. He, and Z. Wang, “Evaluation of resilience in grid-connected microgrids under extreme disasters,” Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 2018, pp. 257–261. https://doi.org/10.1109/APPEEC.2018.8566556; S. Mousavizadeh, H. Mahmoud-Reza, and S. Mohammad-Hossein, “A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources,” Applied Energy, vol. 211, pp. 443–460, Feb. 2018. https://doi.org/10.1016/j.apenergy.2017.11.067; D. J. Rincon, M. A. Mantilla, J. M. Rey, M. Garnica, and D. Guilbert, “An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters,” Energies, vol. 16, no. 3, p. 1052, Jan. 2023. https://doi.org/10.3390/en16031052; P. Mazidi, and M. A. Sanz Bobi, “Strategic maintenance scheduling in an islanded microgrid with distributed energy resources,” Electric Power Systems Research, vol. 148, pp. 171–182, Jul. 2017. https://doi.org/10.1016/j.epsr.2017.03.032; R. Ghaffarpour, B. Mozafari, A. M. Ranjbar, and T. Torabi, “Resilience oriented water and energy hub scheduling considering maintenance constraint,” Energy, vol. 158, pp. 1092–1104, Sep. 2018. https://doi.org/10.1016/j.energy.2018.06.022; M. Heisz, M. Guillén Paredes, SolarPower Europe and Asolmex, “Operación y Mantenimiento Guia de mejores practicas,” Edición México, p. 92, Sep. 2018. https://asolmex.org/estudios/Operaci%C3%B3n-y-Mantenimiento-SPE-and-ASOLMEX.pdf; K. Keisang, T. Bader, and R. Samikannu, “Review of Operation and Maintenance Methodologies for Solar Photovoltaic Microgrids,” Frontiers in Energy Research, vol. 9, p. 730230, Nov. 2021, https://doi.org/10.3389/fenrg.2021.730230; B. S. Dhillon, "Engineering systems reliability, safety, and maintenance: An integrated approach," CRC Press, New York: Taylor & Francis, 2017.; V. C. Gungor et al., “A Survey on smart grid potential applications and communication requirements,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28–42, Feb. 2013. https://doi.org/10.1109/TII.2012.2218253; M. Ghorbanian, S. H. Dolatabadi, M. Masjedi, and P. Siano, “Communication in smart grids: A comprehensive review on the existing and future communication and information infrastructures,” IEEE Systems Journal, vol. 13, no. 4, pp. 4001–4014, Dec. 2019. https://doi.org/10.1109/JSYST.2019.2928090; A. M. Eltamaly, and M. A. Ahmed, “Performance Evaluation of Communication Infrastructure for Peer-to-Peer Energy Trading in Community Microgrids,” Energies, vol. 16, no. 13, p. 5116, Jul. 2023. https://doi.org/10.3390/en16135116; I. Serban, S. Cespedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gomez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47694–47712, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2977928; S. Thakar, A. S. Vijay, and S. Doolla, “System reconfiguration in microgrids,” Sustainable Energy, Grids and Networks, vol. 17, p. 100191, Mar. 2019. https://doi.org/10.1016/j.segan.2019.100191; O. Badran, S. Mekhilef, H. Mokhlis, and W. Dahalan, “Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 854–867, Jun. 2017. https://doi.org/10.1016/j.rser.2017.02.010; B. Sultana, M. W. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power loss reduction in distribution system via network reconfiguration,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 297–310, Dec. 2016. https://doi.org/10.1016/j.rser.2016.08.011; N. W. A. Lidula, and A. D. Rajapakse, “Voltage balancing and synchronization of microgrids with highly unbalanced loads,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 907–920, Mar. 2014. https://doi.org/10.1016/j.rser.2013.12.045; A. A. Memon, H. Laaksonen, and K. Kauhaniemi, “Microgrid protection with conventional and adaptive protection schemes,” Microgrids: Advances in Operation, Control, and Protection, pp. 523–579, Mar. 2021. https://doi.org/10.1007/978-3-030-59750-4_19; T. Hira, L. Jae-Suk, and K. Rae-Young, “Efficiency evaluation of the microgrid for selection of common bus using copula function-based efficiency curves of the converters,” Sustainable Energy Technologies and Assessments, vol. 48, p. 101621, Dec. 2021. https://doi.org/10.1016/j.seta.2021.101621; M. S. Mahmoud, S. Azher Hussain, and M. A. Abido, “Modeling and control of microgrid: An overview,” Journal of the Franklin Institute, vol. 351, no. 5, pp. 2822–2859, May. 2014. https://doi.org/10.1016/j.jfranklin.2014.01.016; A. Anvari-Mohammadi, H. Abdi, B. Mohammadi-Ivatloo, and N. Hatziargyriou, "Microgrids Advances in Operation, Control, and Protection", Springer Nature, 2021. https://link.springer.com/book/10.1007/978-3-030-59750-4; J. M. Rey, J. Torres Martinez, and M. Castilla, “Secondary control for island microgrid,” Microgrids Design and Implementation, pp. 171–193, Nov. 2018. https://doi.org/10.1007/978-3-319-98687-6_6; B. Papari, C. S. Edrington, M. Ghadamyari, M. Ansari, G. Ozkan, and B. Chowdhury, “Metrics Analysis Framework of Control and Management System for Resilient Connected Community Microgrids,” IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 704–714, Apr. 2022. https://doi.org/10.1109/TSTE.2021.3129450; A. Rashwan, A. Mikhaylov, T. Senjyu, M. Eslami, A. M. Hemeida, and D. S. M. Osheba, “Modified Droop Control for Microgrid Power-Sharing Stability Improvement,” Sustainability, vol. 15, no. 14, p. 11220, Jul. 2023. https://doi.org/10.3390/su151411220; S. P. Bihari et al., “A Comprehensive Review of Microgrid Control Mechanism and Impact Assessment for Hybrid Renewable Energy Integration,” IEEE Access, vol. 9, pp. 88942–88958, Jun. 2021. https://doi.org/10.1109/ACCESS.2021.3090266; N. Khosravi et al., “A novel control approach to improve the stability of hybrid AC/DC microgrids,” Applied Energy, vol. 344, p. 121261, Aug. 2023. https://doi.org/10.1016/j.apenergy.2023.121261; Z. Wang et al., “Asynchronous Distributed Power Control of Multimicrogrid Systems,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1960–1973, Dec. 2020. https://doi.org/10.1109/TCNS.2020.3018703; A. Hooshyar, and R. Iravani, “Microgrid Protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, Jul. 2017. https://doi.org/10.1109/JPROC.2017.2669342; S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, “An overview of microgrid protection methods and the factors involved,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 174–186, Oct. 2016. https://doi.org/10.1016/j.rser.2016.05.089; A. Azimi, and H. Hashemi-Dezaki, “Optimized protection coordination of microgrids considering power quality-based voltage indices incorporating optimal sizing and placement of fault current limiters,” Sustainable Cities and Society, vol. 96, p. 104634, Sep. 2023. https://doi.org/10.1016/j.scs.2023.104634; T. S. Ustun, C. Ozansoy, and A. Zayegh, “Modeling of a centralized microgrid protection system and distribuited energy resources according to IEC 61850-7-420,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1560–1567, Aug. 2012. https://doi.org/10.1109/TPWRS.2012.2185072; T. S. Ustun, C. Ozansoy, and A. Zayegh, “Fault current coefficient and time delay assignment for microgrid protection system with central protection unit,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 598–606, May. 2013. https://doi.org/10.1109/TPWRS.2012.2214489; S. Mirsaeidi, D. M. Said, M. W. Mustafa, and M. H. Habibuddin, “A protection strategy for micro-grids based on positive-sequence component,” IET Renewable Power Generation, vol. 9, no. 6, pp. 600–609, Aug. 2015. https://doi.org/10.1049/iet-rpg.2014.0255; E. Casagrande, W. L. Woon, H. H. Zeineldin, and D. Svetinovic, “A differential sequence component protection scheme for microgrids with inverter-based distributed generators,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 29–37, Jan. 2014. https://doi.org/10.1109/TSG.2013.2251017; H. Muda, S. Member, and P. Jena, “Microgrid Protection : A New Technique,” IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 757–767, Apr. 2017. https://doi.org/10.1109/TPWRD.2016.2601921; P. T. Manditereza, and R. C. Bansal, “Electrical Power and Energy Systems Protection of microgrids using voltage-based power di ff erential and sensitivity analysis,” Electrical Power and Energy Systems, vol. 118, p. 105756, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105756; R. Bhargav, B. R. Bhalja, and C. P. Gupta, “Algorithm for fault detection and localisation in a mesh-type bipolar DC microgrid network,” IET Generation, transmission & distribution, vol. 13, no. 15, Jul. 2019. https://doi.org/10.1049/iet-gtd.2018.5070; A. Cagnano, E. De Tuglie, and P. Gibilisco, “Assessment and Control of Microgrid Impacts on Distribution Networks by Using Experimental Tests,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7157–7164, Sep. 2019. https://doi.org/10.1109/TIA.2019.2940174; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2656

7
Academic Journal

Superior Title: TecnoLógicas; Vol. 26 No. 57 (2023); e2498 ; TecnoLógicas; Vol. 26 Núm. 57 (2023); e2498 ; 2256-5337 ; 0123-7799

File Description: application/pdf

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498/2914; A. H. Mohsenian-Rad and A. Leon-Garcia, “Distributed Internet-Based Load Altering Attacks Against Smart Power Grids,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 667–674, Dec. 2011. https://doi.org/10.1109/TSG.2011.2160297; S. Ansari, A. Chandel, and M. Tariq, “A Comprehensive Review on Power Converters Control and Control Strategies of AC/DC Microgrid,” IEEE Access, vol. 9, pp. 17998–18015, 2021. https://doi.org/10.1109/ACCESS.2020.3020035; A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, “Interlinking converters and their contribution to primary regulation: a review,” Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019. https://doi.org/10.1016/j.ijepes.2019.03.057; X. Wei, X. Xiangning, and C. Pengwei, “Overview of key microgrid technologies,” Int. Trans. Electr. Energy Syst., vol. 28, no. 7, p. e2566, Mar. 2018. https://doi.org/10.1002/etep.2566; K. Kabirifar and M. Mojtahedi, “The impact of Engineering, Procurement and Construction (EPC) phases on project performance: A case of large-scale residential construction project,” Buildings, vol. 9, no. 1, p. 15, Jan. 2019. https://doi.org/10.3390/buildings9010015; F. Taghizadeh-Hesary, N. Yoshino, E. Rasoulinezhad, and C. Rimaud, “Power purchase agreements with incremental tariffs in local currency: An innovative green finance tool,” Glob. Financ. J., vol. 50, p. 100666, Nov. 2021. https://doi.org/10.1016/j.gfj.2021.100666; J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids – An overview,” Renew. Sustain. Energy Rev., vol. 136, p. 110422, Feb. 2021. https://www.doi.org/10.1016/j.rser.2020.110422; B. K. Poolla, D. Groß, and F. Dörfler, “Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3035–3046, Jul. 2019. https://doi.org/0.1109/TPWRS.2019.2892290; D. Wang and H. Wu, “Application of virtual synchronous generator technology in microgrid,” In 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016, pp. 3142–3148. https://www.doi.org/10.1109/IPEMC.2016.7512798; J. Chen and T. O’Donnell, “Parameter Constraints for Virtual Synchronous Generator Considering Stability,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2479–2481, May. 2019. https://www.doi.org/10.1109/TPWRS.2019.2896853; J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268–2277, Sep. 2017. https://www.doi.org/10.1109/TSG.2016.2521405; A. Fathi, Q. Shafiee, and H. Bevrani, “Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6289–6297, Nov. 2018. https://www.doi.org/10.1109/TPWRS.2018.2850880; M. Gaiceanu, I. N. Arama, and I. Ghenea, "Power Electronic Converters in AC Microgrid," In Microgrid Architectures, Control and Protection Methods, Cham, Power Systems Springer. 2020, pp. 139–175. https://www.doi.org/10.1007/978-3-030-23723-3_7; B. Toual, L. Mokrani, A. Kouzou, and M. Machmoum, “Power quality and capability enhancement of a wind-solar-battery hybrid power system,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 64, no. 2, pp. 115–132, Jan. 2020. https://www.doi.org/10.3311/PPEE.14437; T. Dragičević, L. Meng, F. Blaabjerg, and Y. Li, “Control of Power Converters in ac and dc Microgrids,” Wiley Encycl. Electr. Electron. Eng., Feb. 2019. https://www.doi.org/10.1002/047134608x.w8389; P. Rodriguez, I. Candela, C. Citro, J. Rocabert and A. Luna, "Control of grid-connected power converters based on a virtual admittance control loop," In 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10. https://doi.org/10.1109/EPE.2013.6634621; O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management - Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014. https://doi.org/10.1016/j.rser.2014.01.016; J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, Control of Power Converters in AC Microgrids, Mahdavi Tabatabaei, Power Systems, 2012. https://www.doi.org/10.1007/978-3-030-23723-3_13; F. Z. Peng, Y. W. Li, and L. M. Tolbert, "Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid," In 2009 IEEE Power & Energy Society General Meeting, Calgary, 2009, pp. 1-8. https://doi.org/10.1109/PES.2009.5275191; T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul. 2007. https://doi.org/10.1016/j.epsr.2006.08.017; G. Guarderas, A. Francés, R. Asensi, and J. Uceda, "Large-signal black-box behavioral modeling of grid-supporting power converters in AC microgrids," In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, 2017, pp. 153-158. https://doi.org/10.1109/ICRERA.2017.8191258; H.- J. Yoo, T.- T. Nguyen, and H.- M. Kim, “Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter,” Energies, vol. 10, no. 6, p. 822, Jun. 2017. https://doi.org/10.3390/en10060822; Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, "Energy router: Architectures and functionalities toward Energy Internet," In 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, 2011, pp. 31-36. https://doi.org/10.1109/SmartGridComm.2011.6102340; Y. Ma, X. Wang, X. Zhou and Z. Gao, "An overview of energy routers," In 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, 2017, pp. 4104-4108. https://doi.org/10.1109/CCDC.2017.7979219; H. Alrajhi Alsiraji and R. El-Shatshat, "Serious Operation Issues and Challenges Related to Multiple Interlinking Converters Interfacing a Hybrid AC/DC Microgrid," In 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, 2018, pp. 1-5. https://doi.org/10.1109/CCECE.2018.8447831; M. Hosseinzadeh and F. R. Salmasi, “Robust optimal power management system for a hybrid AC/DC micro-grid,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 675–687, Jul. 2015. https://doi.org/10.1109/TSTE.2015.2405935; P. Li, T. Guo, F. Zhou, J. Yang, and Y. Liu, “Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid,” Int. J. Electr. Power Energy Syst., vol. 122, p. 106208, Nov. 2020. https://doi.org/10.1016/j.ijepes.2020.106208; J. Huang, J. Xiao, C. Wen, P. Wang, and A. Zhang, “Implementation of Bidirectional Resonant DC Transformer in Hybrid AC/DC Micro-Grid,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1532–1542, Mar. 2019. https://doi.org/10.1109/TSG.2017.2771822; Z. Lv, Y. Zhang, Y. Xia, and W. Wei, “Adjustable inertia implemented by bidirectional power converter in hybrid AC/DC microgrid,” IET Gener. Transm. Distrib., vol. 14, no. 17, pp. 3594–3603, Jul. 2020. https://doi.org/10.1049/iet-gtd.2020.0279; M. Kumar, S. C. Srivastava, S. N. Singh, and M. Ramamoorty, “Development of a control strategy for interconnection of islanded direct current microgrids,” IET Renew. Power Gener., vol. 9, no. 3, pp. 284–296, Apr. 2015. https://doi.org/10.1049/iet-rpg.2013.0375; J. Ma, M. Zhu, X. Cai and Y. W. Li, "Configuration and operation of DC microgrid cluster linked through DC-DC converter," In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2565-2570. https://doi.org/10.1109/ICIEA.2016.7604026; D. R. Aryani and H. Song, “Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode,” Energies, vol. 9, no. 6, p. 469, Jun. 2016. https://doi.org/10.3390/en9060469; P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1374–1382, May. 2013. https://doi.org/10.1109/TIA.2013.2252319; P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1533–1543, Apr. 2013. https://www.doi.org/10.1109/TPEL.2012.2210445; A. S. Morais and L. A. C. Lopes, "Interlink Converters in DC nanogrids and its effect in power sharing using distributed control," In 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, 2016, pp. 1-7. https://www.doi.org/10.1109/PEDG.2016.7527077; B. Karanayil, M. Ciobotaru, and V. G. Agelidis, “Power flow management of isolated multiport converter for more electric aircraft,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5850–5861, Jul. 2017. https://www.doi.org/10.1109/TPEL.2016.2614019; X. Li et al., “Flexible Interlinking and Coordinated Power Control of Multiple DC Microgrids Clusters,” IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 904–915, Apr. 2018. https://www.doi.org/10.1109/TSTE.2017.2765681; M. Lee, W. Choi, H. Kim and B. -H. Cho, "Operation schemes of interconnected DC microgrids through an isolated bi-directional DC-DC converter," In 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015, pp. 2940-2945. https://www.doi.org/10.1109/APEC.2015.7104769; S. Konar and A. Ghosh, "Interconnection of islanded DC microgrids," In 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, 2015, pp. 1-5. https://www.doi.org/10.1109/APPEEC.2015.7380986; R. Haghmaram, F. Sedaghati, and R. Ghafarpour, “Power exchange among microgrids using modular-isolated bidirectional DC–DC converter,” Electr. Eng., vol. 99, pp. 441–454, Sep. 2016. https://www.doi.org/10.1007/s00202-016-0437-7; R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 821–834, May. 2010. https://www.doi.org/10.1109/TPWRS.2009.2034666; Y. Shu, G. Tang, and H. Pang, “A back-to-back VSC-HVDC system of Yu-E power transmission lines to improve cross-region capacity,” CSEE J. Power Energy Syst., vol. 6, no. 1, pp. 64–71, Mar. 2020. https://www.doi.org/10.17775/CSEEJPES.2018.01280; M. Goyal and A. Ghosh, “Microgrids interconnection to support mutually during any contingency,” Sustain. Energy, Grids Networks, vol. 6, pp. 100–108, Jun. 2016. https://www.doi.org/10.1016/j.segan.2016.02.006; Q. Sun, J. Zhou, J. M. Guerrero, and H. Zhang, “Hybrid Three-Phase/Single-Phase Microgrid Architecture With Power Management Capabilities,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5964–5977, Oct. 2015. https://www.doi.org/10.1109/TPEL.2014.2379925; Y. Liu, Y. Fang, and J. Li, “Interconnecting microgrids via the energy router with smart energy management,” Energies, vol. 10, no. 9, p. 1297, Aug. 2017. https://www.doi.org/10.3390/en10091297; N. Deng, X. -P. Zhang, P. Wang, X. Gu and M. Wu, "A converter-based general interface for AC microgrid integrating to the grid," In IEEE PES ISGT Europe 2013, Lyngby, 2013, pp. 1-5. https://www.doi.org/10.1109/ISGTEurope.2013.6695391; N. Deng and X. -P. Zhang, "A novel management scheme of multiple microgrids via a common interface," In 11th IET International Conference on AC and DC Power Transmission, Birmingham, 2015, pp. 1-66. https://www.doi.org/10.1049/cp.2015.0059; R. Majumder, "A Hybrid Microgrid With DC Connection at Back to Back Converters," IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 251-259, Jan. 2014. https://www.doi.org/10.1109/TSG.2013.2263847; I. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg, “Intertied ac-ac microgrids with autonomous power import and export,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 385–393, Feb. 2015. https://www.doi.org/10.1016/j.ijepes.2014.10.040; I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac microgrids,” IET Power Electron., vol. 6, no. 7, pp. 1329–1338, Aug. 2013. https://www.doi.org/10.1049/iet-pel.2012.0640; S. Bala and G. Venkataramanan, "Autonomous power electronic interfaces between microgrids," In 2009 IEEE Energy Conversion Congress and Exposition, San Jose, 2009, pp. 3006-3013. https://www.doi.org/10.1109/ECCE.2009.5316062; J. Susanto, F. Shahnia, A. Ghosh, and S. Rajakaruna, "Interconnected microgrids via back-to-back converters for dynamic frequency support," In 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, 2014, pp. 1-6. https://www.doi.org/10.1109/AUPEC.2014.6966616; Z. -X. Zou, G. Buticchi, and M. Liserre, "Control and communication in the Smart Transformer-fed grid," In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, 2016, pp. 1-9. https://www.doi.org/10.1109/ETFA.2016.7733495; C. Kumar, Z. Zou and M. Liserre, "Smart transformer-based hybrid grid loads support in partial disconnection of MV/HV power system," In 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016, pp. 1-8. https://www.doi.org/10.1109/ECCE.2016.7855451; W. A. Rodrigues, R. A. S. Santana, A. P. L. Cota, T. R. Oliveira, L. M. F. Morais and P. C. Cortizo, "Integration of solid state transformer with DC microgrid system," In 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016, pp. 1-6. https://www.doi.org/10.1109/SPEC.2016.7846176; S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, "Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management," IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 231-243, Jun. 2011. https://www.doi.org/10.1109/TSG.2011.2115260; X. She, A. Q. Huang, S. Lukic, and M. E. Baran, “On integration of solid-state transformer with zonal DC microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 975–985, Jun. 2012. https://www.doi.org/10.1109/TSG.2012.2187317; X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 954–965, Mar. 2014. https://www.doi.org/10.1109/TSG.2013.2277977; R. Jadeja, A. Ved, T. Trivedi, and G. Khanduja, “Control of Power Electronic Converters in AC Microgrid,” In Microgrid Architectures, Control and Protection Methods. Power Systems. Cham, 2019, pp 329–355. https://www.doi.org/10.1007/978-3-030-23723-3_13; T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul. 2007. https://www.doi.org/10.1016/j.epsr.2006.08.017; D. A. Herrera-Jaramillo, D. González Montoya, E. E. Henao-Bravo, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Systematic analysis of control techniques for the dual active bridge converter in photovoltaic applications,” Int. J. Circuit Theory Appl., vol. 49, no. 9, pp. 3031–3052, Apr. 2021. https://www.doi.org/10.1002/cta.3031; M. Neubert, A. Gorodnichev, J. Gottschlich, and R. W. De Doncker, "Performance analysis of a triple-active bridge converter for interconnection of future dc-grids," In 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016, pp. 1-8. https://www.doi.org/10.1109/ECCE.2016.7855337; S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: An overview,” IEEE Access, vol. 7, pp. 117997–118019, Aug. 2019. https://www.doi.org/10.1109/ACCESS.2019.2937239; V. M. Iyer, S. Gulur, S. Bhattacharya, and R. Ramabhadran, "A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid," In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, 2019, pp. 5783-5790. https://www.doi.org/10.1109/ECCE.2019.8912590; H. Yépez, W. Pavón, S. Simani, E. Ayala and A. B. Asiedu-Asante, "Source Inverter Voltage and Frequency Control for AC Isolated Microgrid Applications," In 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, 2022, pp. 1-6. https://www.doi.org/10.1109/ENERGYCON53164.2022.9830410; M. Montufar, W. Pavón, M. Jaramillo, and S. Simani, “Control Strategy Applied to Smart Photovoltaic Inverters for Reactive Power Exchange Through Volt-Var Control to Improve Voltage Quality in Electrical Distribution Networks,” In Communication, Smart Technologies and Innovation for Society, Singapore, Smart Innovation, Systems and Technologies, 2021, pp 357–366. https://www.doi.org/10.1007/978-981-16-4126-8_33; M. Lema, W. Pavon, L. Ortiz, A.B. Asiedu-Asante and S. Simani, “Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability” Energies, vol. 15, no. 15, p. 5442, Jul. 2022. https://www.doi.org/10.3390/en15155442; W. Pavon, E. Inga, S. Simani and M. Nonato, “A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability,” Energies, vol. 14, no. 24, p. 8451, Nov. 2021. https://www.doi.org/10.3390/en1424845; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498

8
Academic Journal

Superior Title: TecnoLógicas; Vol. 21 No. 43 (2018); 107-125 ; TecnoLógicas; Vol. 21 Núm. 43 (2018); 107-125 ; 2256-5337 ; 0123-7799

File Description: application/pdf; text/html; text/xml

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1065/1067; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1065/1082; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1065/1219; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1065/1240; A. Aggarwal, A. Singhal, and S. J. Darak, “Clean and Green India: Is Solar Energy the Answer?,” IEEE Potentials, vol. 37, no. 1, pp. 40–46, Jan. 2018.; L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vásquez, and J. M. Guerrero, “Microgrid supervisory controllers and energy management systems: A literature review,” Renew. Sustain. Energy Rev., vol. 60, pp. 1263–1273, Jul. 2016.; Xiang Eric Yu, Yanbo Xue, S. Sirouspour, and A. Emadi, “Microgrid and transportation electrification: A review,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), 2012, pp. 1–6.; C. Shum et al., “The development of a smart grid co-simulation platform and case study on Vehicle-to-Grid voltage support application,” in 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), 2013, pp. 594–599.; C. C. Mendoza, A. M. Quintero, F. Santamaría, and A. Alarcón, “Coordinated recharge of electric vehicles in real time,” DYNA, vol. 83, no. 197, p. 222, Jun. 2016.; C. Mendoza, A. Quintero, F. Santamaría, and A. Alarcon, “Estimation of electric energy required by electric vehicles based on travelled distances in a residential zone,” TECCIENCIA, vol. 11, no. 21, pp. 17–24, Sep. 2016.; A. Anvari-Moghaddam, J. M. Guerrero, J. C. Vásquez, H. Monsef, and A. Rahimi-Kian, “Efficient energy management for a grid-tied residential microgrid,” IET Gener. Transm. Distrib., vol. 11, no. 11, pp. 2752–2761, Aug. 2017.; T. Sattarpour, D. Nazarpour, and S. Golshannavaz, “A multi-objective HEM strategy for smart home energy scheduling: A collaborative approach to support microgrid operation,” Sustain. Cities Soc., vol. 37, pp. 26–33, Feb. 2018.; A. M. Vega, F. Santamaria, and E. Rivas, “Modeling for home electric energy management: A review,” Renew. Sustain. Energy Rev., vol. 52, pp. 948–959, Dec. 2015.; I. R. Pinzón Vela, “Estimación de funciones de consumo de energia eléctrica para clientes residenciales en Bogotá ,” Pontificia Universidad Javeriana, 2010.; J. P. Lozano Celis and W. C. Guzmán Espitia, “Evaluación de demanda de energía eléctrica según hábitos de consumo actuales en la ciudad de Bogotá,” Universidad Distrital Francisco José de Caldas, 2016.; K. A. Hernández Hernández and J. S. Carrillo Cruz, “Análisis de la curva de demanda eléctrica para usuarios residenciales estrato 4 en la ciudad de Bogotá ante diferentes escenarios de los hábitos de consumo,” Universidad Distrital Francisco José de Caldas, 2017.; Empresas Públicas de Medellín, “Uso inteligente de la energía eléctrica Banco de recomendaciones,” EPM, 2012. [Online]. Available: https://www.epm.com.co/site/Portals/2/documentos/banco_de_recomendaciones_uso_inteligente_energia_electricamarzo_27.pdf.; Universidad Nacional de Colombia, “Determinación del consumo final de energía en los sectores residencial urbano y comercial y determinación de consumos para equipos domésticos de energía eléctrica y gas,” Bogotá, 2006.; Corporación para la Energía y el Medio Ambiente. Corpoema, “Caracterización energética del sector residencial urbano y rural en colombia,” Bogotá, vol.1, 2012.; Corporación para la Energía y el Medio Ambiente. Corpoema, “Caracterización energética del sector residencial urbano y rural en colombia,” vol.2, Bogotá, 2012.; A. M. Vega Escobar, “Gestión de la energía eléctrica domiciliaria con base en la gestión activa de la demanda,” Universidad Distrital Francisco José de Caldas, 2018.; Instituto Colombiano de Normas Técnicas y Certificación, Código eléctrico colombiano – NTC 2050, 1st ed. Bogotá: ICONTEC, 2002.; S. J. Chiang, Hsin-Jang Shieh, and Ming-Chieh Chen, “Modeling and Control of PV Charger System With SEPIC Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.; H. R. Galiveeti, A. K. Goswami, and N. B. Dev Choudhury, “Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems,” Eng. Sci. Technol. an Int. J., vol. 21, no. 1, pp. 50–59, Feb. 2018.; G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley, and M. Narayana, “Impact of electric vehicles on power distribution networks,” in 2009 IEEE Vehicle Power and Propulsion Conference, 2009, pp. 827–831.; D. Martínez Vicente, “El impacto del vehículo eléctrico en la red de distribución,” Universitat Politécnica de Catalunya, 2011.; J. Kalawoun, K. Biletska, F. Suard, and M. Montaru, “From a novel classification of the battery state of charge estimators toward a conception of an ideal one,” J. Power Sources, vol. 279, pp. 694–706, Apr. 2015.; E. Prieto-Araujo, P. Olivella-Rosell, M. Cheah-Mañe, R. Villafafila-Robles, and O. Gomis-Bellmunt, “Renewable energy emulation concepts for microgrids,” Renew. Sustain. Energy Rev., vol. 50, pp. 325–345, Oct. 2015.; L. K. Gan, B. Riar, J. Lee, and D. Howey, “Low-cost modular PV-battery microgrid emulator for testing of energy management algorithms,” in 2017 IEEE Second International Conference on DC Microgrids (ICDCM), 2017, pp. 602–608.; E. Radu, P. Dorin, P. Toma, and L. Eniko, “An islanded renewable energy microgrid emulator for geothermal, biogas, photovoltaic and lead acid battery storage,” in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 2109–2114; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1065

9
Academic Journal

Superior Title: TecnoLógicas; Vol. 21 No. 42 (2018); 169-185 ; TecnoLógicas; Vol. 21 Núm. 42 (2018); 169-185 ; 2256-5337 ; 0123-7799

File Description: application/pdf; text/html; text/xml

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/786/739; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/786/986; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/786/1207; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/786/1254; ENTSO-E, “Supporting Document for the Network Code on Emergency and Restoration,” ENTSO-E AISBL, 2015.; M. Braun, Provision of ancillary services by distributed generators: Technological and economic perspective, vol. 10. Germany: kassel university press GmbH, 2009.; B. Olek, “Deployment of energy storages for ancillary services,” in 11th International Conference on the European Energy Market (EEM14), 2014, pp. 1–5.; F. Alsokhiry, G. P. Adam, and K. L. Lo, “Contribution of distributed generation to ancillary services,” in 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1–5.; A. C. Rueda-Medina, A. Padilha-Feltrin, and J. R. S. Mantovani, “Active power reserve for frequency control provided by distributed generators in distribution networks,” in 2014 IEEE PES General Meeting %7C Conference & Exposition, 2014, pp. 1–5.; A. Burgio, G. Brusco, D. Menniti, A. Pinnarelli, and N. Sorrentino, “Design of a grid-connected Photovoltaic system with grid ancillary services,” in 2013 Africon, 2013, pp. 1–7.; F. Santamaria, J. Hernandez, and C. L. Trujillo, “Regulation on distributed generation: Latin American Case,” in 2014 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T&D-LA), 2014, pp. 1–7.; Congreso de la República, Ley 1715. Colombia, 2014, pp. 1–24.; N. K. Roy and H. R. Pota, “Current Status and Issues of Concern for the Integration of Distributed Generation Into Electricity Networks,” IEEE Syst. J., vol. 9, no. 3, pp. 933–944, Sep. 2015.; S. P. Chowdhury, P. Crossley, and S. Chowdhury, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009.; J. D. Marín-Jiménez, S. X. Carvajal-Quintero, and A. Arango-Manrique, “Discusión de la implementación en Colombia del servicio complementario capacidad de operación por islas,” Directora-Editora, vol. 43, pp. 99–108, 2014.; S. Granfors, “Online testing of generating units on their ability to regulate frequency during restoration of an islanded grid,” in IEEE PES General Meeting, 2010, pp. 1–5.; H. Liang, L. Cheng, and S. Liu, “Monte Carlo simulation based reliability evaluation of distribution system containing microgrids,” Power Syst. Technol., vol. 35, pp. 76–81, 2011.; H. Gharavi and R. Ghafurian., “Smart Grid: The Electric Energy System of the Future,” Proc. IEEE, vol. 99, no. 6, pp. 917–921, 2011.; P. Tenti, A. Costabeber, P. Mattavelli, and D. Trombetti, “Distribution Loss Minimization by Token Ring Control of Power Electronic Interfaces in Residential Microgrids,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3817–3826, Oct. 2012.; O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – part II: System operation, power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, Aug. 2014.; J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254–1262, Apr. 2013.; H. Mohamad, H. Mokhlis, A. H. A. Bakar, and H. W. Ping, “A review on islanding operation and control for distribution network connected with small hydro power plant,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3952–3962, Oct. 2011.; M. R. Aghamohammadi and A. Shahmohammadi, “Intentional islanding using a new algorithm based on ant search mechanism,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 138–147, Feb. 2012.; B. Enacheanu, M. Fontela, C. Andrieu, H. Pham, A. Martin, and Y. B. Gie-Idea, “New control strategies to prevent blackouts: intentional islanding operation in distribution networks,” in 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005), 2005, vol. 2005, p. 5.; C. E. T. Foote et al., “A Power-Quality Management Algorithm for Low-Voltage Grids With Distributed Resources,” IEEE Trans. Power Deliv., vol. 23, no. 2, pp. 1055–1062, Apr. 2008.; P. M. Costa and M. A. Matos, “Assessing the contribution of microgrids to the reliability of distribution networks,” Electr. Power Syst. Res., vol. 79, no. 2, pp. 382–389, Feb. 2009.; E. Planas, A. Gil-de-Muro, J. Andreu, I. Kortabarria, and I. Martínez de Alegría, “General aspects, hierarchical controls and droop methods in microgrids: A review,” Renew. Sustain. Energy Rev., vol. 17, pp. 147–159, Jan. 2013.; IEEE Power & Engineering Society, IEEE Guide for Electric Power Distribution Reliability Indices, vol. 2012, no. May. Institute of Electrical and Electronics Engineers, 2012.; C. of E. E. Regulators, “CEER Benchmarking Report 5 . 1 on the Continuity of Electricity Supply Data update,” 2014.; D. Committee, I. Power, and E. Society, IEEE Guide for Collecting , Categorizing , and Utilizing Information Related to Electric Power Distribution Interruption Events IEEE Power and Energy Society. Institute of Electrical and Electronics Engineers, 2014.; A. Whitfield and T. Graham, “Electricity Networks Service Standards : An Overview,” 2014.; F. P. Sioshansi, Future of utilities - utilities of the future : how technological innovations in distributed energy resources will reshape the electric power sector, Fereidoon. Walnut Creek: Elsevier, 2016.; UPME, ASOCODIS, and MinMinas, “Informe Sectorial Sobre La Evolución De La Distribución Y Comercialización De Energía Eléctrica En Colombia,” UPME, Bogotá D.C., Colombia, 2011.; R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods. Boston, MA: Springer US, 1994.; IEEE Std 1547.4, IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems. Institute of Electrical and Electronics Engineers, 2011.; D. Della Giustina, P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni, “Automation of Distribution Grids With IEC 61850: A First Approach Using Broadband Power Line Communication,” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2372–2383, Sep. 2013.; N. Higgins, V. Vyatkin, N.-K. C. Nair, and K. Schwarz, “Distributed Power System Automation With IEC 61850, IEC 61499, and Intelligent Control,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 41, no. 1, pp. 81–92, Jan. 2011.; Y. Simmhan et al., “Cloud-Based Software Platform for Big Data Analytics in Smart Grids,” Comput. Sci. Eng., vol. 15, no. 4, pp. 38–47, Jul. 2013.; J. Peppanen, J. Grimaldo, M. J. Reno, S. Grijalva, and R. G. Harley, “Increasing distribution system model accuracy with extensive deployment of smart meters,” in 2014 IEEE PES General Meeting %7C Conference & Exposition, 2014, pp. 1–5.; IEEE Standard, IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems. Institute of Electrical and Electronics Engineers, 2003.; Comisión de Regulación de Energía y Gas - CREG, Resolición 176. 2016, p. 251.; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/786

10
Academic Journal

Superior Title: TecnoLógicas; Vol. 21 No. 42 (2018); 13-30 ; TecnoLógicas; Vol. 21 Núm. 42 (2018); 13-30 ; 2256-5337 ; 0123-7799

File Description: application/pdf; text/html; text/xml

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/904; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/973; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/1197; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/774/1246; Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard, “Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response,” Appl. Energy, vol. 138, pp. 695–706, 2015.; C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design,” Renew. Sustain. Energy Rev., vol. 64, pp. 237–247, 2016.; D. Neves, M. C. Brito, and C. A. Silva, “Impact of solar and wind forecast uncertainties on demand response of isolated microgrids,” Renew. Energy, vol. 87, pp. 1003–1015, Mar. 2016.; F. Martin-Martínez, A. Sánchez-Miralles, and M. Rivier, “A literature review of Microgrids: A functional layer based classification,” Renew. Sustain. Energy Rev., vol. 62, pp. 1133–1153, 2016.; S. M. Nosratabadi, R. Hooshmand, and E. Gholipour, “A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems,” Renew. Sustain. Energy Rev., vol. 67, pp. 341–363, Jan. 2017.; F. Adinolfi, G. M. Burt, P. Crolla, F. D. Agostino, M. Saviozzi, and F. Silvestro, “Distributed Energy Resources Management in a Low-Voltage Test Facility,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2593–2603, 2015.; P. Faria, Z. Vale, and J. Baptista, “Constrained consumption shifting management in the distributed energy resources scheduling considering demand response,” Energy Convers. Manag., vol. 93, pp. 309–320, Mar. 2015.; M. Bayat, K. Sheshyekani, M. Hamzeh, and A. Rezazadeh, “Coordination of Distributed Energy Resources and Demand Response for Voltage and Frequency Support of MV Microgrids,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1506–1516, Mar. 2016.; L. Montuori, M. Alcázar-Ortega, C. Álvarez-Bel, and A. Domijan, “Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator,” Appl. Energy, vol. 132, pp. 15–22, Nov. 2014.; T. L. Vandoorn, B. Zwaenepoel, J. D. M. De Kooning, B. Meersman, and L. Vandevelde, “Smart microgrids and virtual power plants in a hierarchical control structure,” in 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, 2011, pp. 1–7.; S. B. Van Broekhoven, N. Judson, S. V. T. Nguyen, and W. D. Ross, “Microgrid Study : Energy Security for DoD Installations,” 2012.; R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 473–484, 2014.; J. Kwac and R. Rajagopal, “Demand response targeting using big data analytics,” in 2013 IEEE International Conference on Big Data, 2013, pp. 683–690.; R.-S. Liu, “An Algorithmic Game Approach for Demand Side Management in Smart Grid with Distributed Renewable Power Generation and Storage,” Energies, vol. 9, no. 8, p. 654, Aug. 2016.; J. A. Peças Lopes, N. Hatziargyriou, J. Mutale, and N. Jenkins, “Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1189–1203, 2007.; S.Abu-Sharkh et al., “Can microgrids make a major contribution to UK energy supply?,” Renew. Sustain. Energy Rev., vol. 10, no. 2, pp. 78–127, Apr. 2006.; M. Afkousi-Paqaleh, A. Abbaspour-Tehrani Fard, and M. Rashidinejad, “Distributed generation placement for congestion management considering economic and financial issues,” Electr. Eng., vol. 92, no. 6, pp. 193–201, Nov. 2010.; J. Schiavo, “Distributed Energy Can Lead to Smarter Grid Planning,” Clean Energy Finance Forum, 2016. [Online]. Available: http://www.cleanenergyfinanceforum.com/2016/07/31/distributed-energy-can-lead-to-smarter-grid-planning.; T. Wildi, Electrical Machines, Drives and Power Systems, 6th ed. Columbus, Ohio: Prentice Hall, 2006.; M. Behrangrad, “A review of demand side management business models in the electricity market,” Renew. Sustain. Energy Rev., vol. 47, pp. 270–283, Jul. 2015.; F. Kreith and D. W. Pepper, Energy fficiency and Renewable Energy Handbook, 2nd ed. CRC Press, 2015.; P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 381–388, 2011.; Observatorio Industrial del Sector de la Electrónica Tecnologías de la Información y Telecomunicaciones, “Smart Grids y la Evolución de la Red Eléctrica,” 2011.; Federal Energy Regulatory Commission - FERC, “Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them,” 2006.; A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand Dispatch,” IEEE Power Energy Mag., vol. 8, no. 3, pp. 20–29, May 2010.; P. Cappers, A. Mills, C. Goldman, R. Wiser, and J. H. Eto, “Mass market demand response and variable generation integration issues: A scoping study,” 2011.; S. P. Chowdhury, P. Crossley, and S. Chowdhury, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009.; F. P. Sioshansi, Integrating Renewable, Distributed & Efficient Energy. Academic Press, 2011.; C. F. Calvillo, A. Sánchez-Miralles, J. Villar, and F. Martín, “Optimal planning and operation of aggregated distributed energy resources with market participation,” Appl. Energy, vol. 182, pp. 340–357, Nov. 2016.; N. W. A. Lidula and A. D. Rajapakse, “Microgrids research: A review of experimental microgrids and test systems,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 186–202, 2011.; M. R. Narimani, P. J. Nauert, J.-Y. Joo, and M. L. Crow, “Reliability assesment of power system at the presence of demand side management,” in 2016 IEEE Power and Energy Conference at Illinois (PECI), 2016, pp. 1–5.; I.-S. Ilie, I. Hernando-Gil, A. J. Collin, J. L. Acosta, and S. Z. Djokic, “Reliability performance assessment in smart grids with demand-side management,” in 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, 2011, pp. 1–7.; F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renew. Sustain. Energy Rev., vol. 45, no. August 2016, pp. 343–350, May 2015.; G. Ferruzzi, G. Graditi, F. Rossi, and A. Russo, “Optimal Operation of a Residential Microgrid: The Role of Demand Side Management,” Intell. Ind. Syst., vol. 1, no. 1, pp. 61–82, 2015.; V. Van Thong, J. Driesen, and R. Belmans, “Power quality and voltage stability of distribution system with distributed energy resources,” Int. J. Distrib. Energy Resour., vol. 1, no. 3, pp. 227–240, 2005.; D. Singh, R. K. Misra, and D. Singh, “Effect of Load Models in Distributed Generation Planning,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2204–2212, Nov. 2007.; H. Iyer, S. Ray, and R. Ramakumar, “Voltage profile improvement with distributed generation,” in IEEE Power Engineering Society General Meeting, 2005, pp. 1603–1610.; A. Arango-Manrique, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Contribution of Distributed Generation to Voltage Control,” Ing. e Investig., vol. 31, no. 2, pp. 153–158, 2011.; M. H. J. Bollen and M. Häger, “Power Quality : Interactions Between Distributed Energy Resources , the Grid , and Other Customers,” Electr. Power Qual. Util. Mag., pp. 51–61, 2005.; S. M. H. Nabavi, S. Hajforoosh, and M. A. S. Masoum, “Placement and sizing of distributed generation units for congestion management and improvement of voltage profile using particle swarm optimization,” in 2011 IEEE PES Innovative Smart Grid Technologies, 2011, pp. 1–6.; J. M. Carrasco et al., “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006.; F. P. Sioshansi, Future of Utilities Utilities of the Future, 1st ed. Boston: Academic Press, 2016.; J. Vasquez, J. Guerrero, J. Miret, M. Castilla, and L. Garcia de Vicuna, “Hierarchical Control of Intelligent Microgrids,” IEEE Ind. Electron. Mag., vol. 4, no. 4, pp. 23–29, 2010.; Congreso de Colombia, Ley 855. Colombia, 2003.; J. F. Bustos, A. L. Sepúlveda, and L. K. Triviio, “Zonas no interconectadas eléctricamente en Colombia: problemas y perspectiva,” SSRN Electron. J., p. 27, 2014.; Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Soluciones Energéticas para las Zonas No Interconectadas de Colombia,” 2014.; Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe telemetría mensual Julio 2016,” 2017. [Online]. Available: https://www.datos.gov.co/Minas-y-Energ-a/Localidades-ZNI-Sin-Telemetr-a-Junio-2017/32n6-8kku.; Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe mensual de telemetría - Enero 2018,” 2018. [Online]. Available: http://190.216.196.84/cnm/info_mes.php.; Sistema de Gestión de Información y Conocimiento en Fuentes No Convencionales de Energía Renovable en Colombia (SGI&C - FNCER), “Sistemas Fotovoltaicos aislados en el municipio de Paratebueno - Cundinamarca,” 2018. [Online]. Available: http://www.upme.gov.co:81/sgic/?q=content/sistemas-fotovoltaicos-aislados-en-el-municipio-de-paratebueno-cundinamarca.; Unidad de Planeación Minero Energética - UPME, “Informe de Proyectos de Generación de Energía Eléctrica,” 2017.; Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “El IPSE no recibirá las obras del proyecto de generación de energía eólica ‘Nazareth’ en la Alta Guajira.,” 2012. [Online]. Available: http://www.ipse.gov.co/ipse/comunicaciones-ipse/noticias-ipse/459-el-ipse-no-recibira-las-obras-del-proyecto-de-generacion-de-energia-eolica-nazareth-en-la-alta-guajira.; Ministerio de Minas y Energía, Decreto 1591. Colombia, 2004.; Comisión de Regulación de Energía y Gas - CREG, Resolución 091. Colombia, 2007.; Unidad de planeación Minero Energetíca - UPME, “Plan Indicativo de Expansión de Cobertura de Energía Eléctrica, PIEC 2016-2020,” 2016.; Expertos en Mercados - XM, “Informe Seguimiento Cogeneradores - Julio 2016,” 2016.; A. L. Michelsen, Resolución 128. Colombia, 1996.; J. H. Flórez Acosta, D. Tobón orozco, and G. A. Castillo Quintero, “¿Ha Sido Efectiva La Promocion De Soluciones Energeticas En Las Zonas No Interconectadas (ZNI) En Colombia?: Un Análisis De La Estructura Institucional,” Cuad. Adm., vol. 22, no. 38, pp. 219–245, 2009.; Unidad de Planeación Minero Energética - UPME, Ministerio de Minas y Energía, and Subdirección de Demanda, “Proyección regional de demanda de energía eléctrica y potencia máxima en Colombia,” 2016.; Expertos en Mercados - XM, “Operación del SIN y Administración del Mercado,” 2016.; S. X. Carvajal, J. Serrano, and S. Arango, “Colombian ancillary services and international connections: Current weaknesses and policy challenges,” Energy Policy, vol. 52, pp. 770–778, Jan. 2013.; Comisión de Regulación de Energía y Gas - CREG, Resolución 071. Colombia, 2006.; Congreso de Colombia, Ley 1715. Colombia, 2014.; Comisión de Regulación de Energía y Gas - CREG, Resolución 030. 2018.; Comisión de Regulación de Energía y Gas - CREG, Resolución 011. Colombia, 2015.; Comisión de Regulación de Energía y Gas - CREG, Resolución 042. Colombia, 2016.; Comisión de Regulación de Energía y Gas - CREG, Resolución 025. Colombia, 1995.; Ministerio de Minas y Energía, Decreto 2492. Colombia, 2014.; Congreso de Colombia, Ley 697. Colombia, 2001.; Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Centinelas de la Energía,” 2013. [Online]. Available: http://www.ipse.gov.co/ipse/proyectos-ipse/uso-racional-de-la-energia.; Unidad de Planeación Minero Energética - UPME, “Estudio: Smart Grids Colombia Visión 2030 - Mapa de ruta para la implementación de redes inteligentes en Colombia,” 2016. [Online]. Available: http://www1.upme.gov.co/Paginas/Smart-Grids-Colombia-Visión-2030.aspx.; N. Hatziargyriou, Microgrids: Architectures and Control. Chichester, United Kingdom: John Wiley and Sons Ltd, 2013.; “Microgrids at Berkeley Lab,” 2018. [Online]. Available: https://building-microgrid.lbl.gov/huatacondo. [Accessed: 30-Jan-2018].; O. Núñez Mata, D. Ortiz Villalba, and R. Palma-Behnke, “Microrredes en la red eléctrica del futuro - Caso Huatacondo.,” Cienc. y Tecnol., vol. 29, no. 2, pp. 1–16, 2013.; Intergovernmental Panel on Climate Change, Climate Change 2013 - The Physical Science Basis. Cambridge: Cambridge University Press, 2014.; L. S. Xavier, J. H. de Oliveira, A. F. Cupertino, V. F. Mendes, and H. A. Pereira, “Saturation scheme for single-phase photovoltaic inverters in multifunctional operation,” in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), 2015, vol. 2015–Septe, no. September, pp. 1392–1397.; M. Wiemann, S. Rolland, and G. Glania, Hybrid Mini-Grids for Rural Electrification: Lessons Learned. Alliance for Rural Electrification, 2011.; S. X. Carvajal Quintero, “Análisis de Servicios Complementarios en Sistemas de Potencia Eléctricos en Ambientes de Mercados,” Universidad Nacional de Colombia, 2013.; International Energy Agency - IEA, “Energy for All: Financing access for the poor,” in World Energy Outlook 2011, 2011, p. 52.; S. C. Bhattacharyya, “Energy access programmes and sustainable development: A critical review and analysis,” Energy Sustain. Dev., vol. 16, no. 3, pp. 260–271, Sep. 2012.; IEEE Standards Association, IEEE 1547.4 Guide for Design , Operation , and Integration of Distributed Resource Island Systems with Electric Power Systems. Institute of Electrical and Electronics Engineers, Incorporated., 2011.; A. Mehrizi-Sani and R. Iravani, “Potential-Function Based Control of a Microgrid in Islanded and Grid-Connected Modes,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1883–1891, Nov. 2010.; K. P. Detroja, “Optimal autonomous microgrid operation: A holistic view,” Appl. Energy, vol. 173, pp. 320–330, Jul. 2016.; A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy Systems Analysis and Operation. CRC Press, 2008.; J. Riesz and I. Macgill, “Frequency Control Ancillary Services. Is Australia a Model Market for Renewable Integration?,” CiteSeer, p. 6, 2013.; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/774

11
Academic Journal

Superior Title: TecnoLógicas; Vol. 21 No. 42 (2018); 147-167 ; TecnoLógicas; Vol. 21 Núm. 42 (2018); 147-167 ; 2256-5337 ; 0123-7799

File Description: application/pdf; text/html; text/xml

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/785/914; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/785/985; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/785/1206; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/785/1253; F. Hoyos, J. Candelo, and J. Silva, “Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC,” INGE CUC, vol. 14, no. 1, pp. 9–18, 2018.; D. W. Hart, Electrónica de potencia. Madrid: Prentice Hall, 2001.; N. Mohan, Advanced electric drives : analysis, control, and modeling using MATLAB/Simulink. Wiley, 2014.; M. H. Rashid, Power electronics handbook : devices, circuits, and applications. Butterworth-Heinemann, 2011.; A. V Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 301–308, 2003.; H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of Quantization Effects in Digitally Controlled DC–DC Converters,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 208–215, Jan. 2007.; F. Angulo, F. Hoyos, and G. Olivar, “Experimental results on the quantization in the ADC device for a ZAD-strategy controlled DC-DC buck converter,” in 7th European Nonlinear Dynamics Conference, 2011, pp. 1–6.; Haitao Hu, V. Yousefzadeh, and D. Maksimovic, “Nonuniform A/D Quantization for Improved Dynamic Responses of Digitally Controlled DC-DC Converters,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1998–2005, Jul. 2008.; F. E. Hoyos, D. Burbano, F. Angulo, G. Olivar, N. Toro, and J. A. Taborda, “Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter,” Int. J. Bifurc. Chaos, vol. 22, no. 10, p. 9, Oct. 2012.; M. Algreer, M. Armstrong, and D. Giaouris, “Adaptive PD+I Control of a Switch-Mode DC–DC Power Converter Using a Recursive FIR Predictor,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2135–2144, Sep. 2011.; M. Shirazi, R. Zane, and D. Maksimovic, “An Autotuning Digital Controller for DC–DC Power Converters Based on Online Frequency-Response Measurement,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2578–2588, Nov. 2009.; C. W. Fung, C. P. Liu, and M. H. Pong, “A Diagrammatic Approach to Search for Minimum Sampling Frequency and Quantization Resolution for Digital Control of Power Converters,” in 2007 IEEE Power Electronics Specialists Conference, 2007, pp. 826–832.; J. A. Taborda, F. Angulo, and G. Olivar, “Estimation of parameters in Buck converter with Digital-PWM control based on ZAD strategy,” in 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS), 2011, pp. 1–4.; F. E. Hoyos Velasco, N. T. García, and Y. A. Garcés Gómez, “Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies,” Int. J. Bifurc. Chaos, vol. 25, no. 4, p. 13, Apr. 2015.; E. Fossas, R. Griño, and D. Biel, “Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm,” in Advances in Variable Structure Systems, 2000, pp. 335–344.; S. Ashita, G. Uma, and P. Deivasundari, “Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter,” IET Power Electron., vol. 7, no. 2, pp. 289–298, Feb. 2014.; F. Angulo, G. Olivar, J. Taborda, and F. Hoyos, “Nonsmooth dynamics and FPIC chaos control in a DC-DC ZAD-strategy power converter,” in ENOC, 2008, pp. 1–6.; F. Angulo, J. E. Burgos, and G. Olivar, “Chaos stabilization with TDAS and FPIC in a buck converter controlled by lateral PWM and ZAD,” in 2007 Mediterranean Conference on Control & Automation, 2007, pp. 1–6.; J. A. Taborda, S. Santini, M. di Bernardo, and F. Angulo, “Active Chaos Control of a Cam-Follower Impacting System using FPIC Technique*,” IFAC Proc. Vol., vol. 42, no. 7, pp. 327–332, 2009.; D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235–247, Jan. 2016.; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/785

12
Academic Journal

Superior Title: TecnoLógicas; Vol. 20 No. 39 (2017); 39-53 ; TecnoLógicas; Vol. 20 Núm. 39 (2017); 39-53 ; 2256-5337 ; 0123-7799

File Description: application/pdf

Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/687/672; C. W. Shyu, “Ensuring access to electricity and minimum basic electricity needs as a goal for the post-MDG development agenda after 2015,” Energy Sustain. Dev., vol. 19, pp. 29–38, 2014.; E. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renew. Sustain. Energy Rev., vol. 51, pp. 125–137, Nov. 2015.; R. S. C. Ximena Barrera, Roberto Gómez, El ABC de los compromisos de Colombia para la COP21, 2nd ed. Santiago de Cali: WWF-Colombia, 2015.; U. de P. M. E.-U. Ministerio de Minas y Energía, Plan Indicativo de Expansión de Cobertura de Energía Eléctrica 2013 - 2017, 1st ed. Bogotá D.C., Colombia: Strategy Ltda., Legis S.A., 2014.; C. A. Juan Ramón Camarillo-Peñaranda, Andrés Julián Saavedra-Montes and Ramos-Paja., “Selección de lugares para instalar micro-redes en Colombia,” CIDET, vol. 10, pp. 9–19, 2014.; K. Tanaka and K. Maeda, “Simulation-based design of microgrid system for a resort community,” in Clean Electrical Power (ICCEP), 2011 International Conference on, 2011, pp. 28–34.; T. Ma, H. Yang, and L. Lu, “A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island,” Appl. Energy, vol. 121, pp. 149–158, May 2014.; M. F. Z. Souza, “On rural microgrids design - a case study in Brazil,” in Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015 IEEE PES, 2015, pp. 160–164.; T. Ma, H. Yang, L. Lu, and J. Peng, “Optimal design of an autonomous solar–wind-pumped storage power supply system,” Appl. Energy, vol. 160, pp. 728–736, Dec. 2015.; I. de P. y P. de S. E. para las Z. N. I.-I. Ministerio de Minas y energía, “Planes de Acción 2014,” Bogotá D.C., Colombia, 2014.; J. Driesen and F. Katiraei, “Design for distributed energy resources,” IEEE Power Energy Mag., vol. 6, no. 3, pp. 30–40, May 2008.; COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS - CREG, “Resolución CREG091-2007,” Diario Oficial No. 46.881 de 24 de enero de 2008, 2007. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/0816582ddafcf8110525785a007a6fa4?OpenDocument&Highlight=0,NoResolucionCREG091-2007. [Accessed: 20-Jun-2001].; U. de P. M. E.-U. Ministerio de Minas y Energía, “Resultados PIEC 2013-2017,” Strategy Ltda., Legis S.A., Bogotá D.C., Colombia, 2012.; Dirección de Inversiones y Finanzas Públicas - DNP, “Inversiones y finanzas públicas,” Bogotá D.C., Colombia, 2015.; NASA, “Surface meteorology and Solar Energy (SSE) Data and Information.” [Online]. Available: https://eosweb.larc.nasa.gov/project/sse/sse_table. [Accessed: 20-Jun-2005].; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/687