Showing 1 - 5 results of 5 for search 'Wei, Min' Narrow Search
2

Authors: 蘇暐民, Wei-Min Su

Contributors: 陳秋炳, Cheu-Pyeng Cheng

Time: 31

File Description: 155 bytes; text/html

Relation: 參考文獻 1. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. 2. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 3. Tang, C. W.; VanSlyke, S. A.; Chen C. H. J. Chem. Phys.1989, 65, 3610. 4. Burroughes, J. H.; Bradley, D D. C.; Brown, A. R.; Mark, R. N.; Mackay K. D.; Friend R. H.; Burn P. L.; Holmes A. B. Nature 1990, 347, 539. 5. Tsutsui, T.; Yahiro, M.; Yokogawa, H.; Kawano, K.; Yokoyama, M.; Adv. Mater. 2001, 13, 1149. 6. 陳金鑫, 鄭榮安, 化學, 1996, 54(1), 125. 7. VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. 8. (a)Elschner, A.; Bruder, F.; Heuer, H. W.;Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R. Syn. Met. 2000, 139, 111. (b)F. Zhang; A. Petr.; H. Peisert; M. Knupfer; L. Dunsch J. Phys. Chem. B, 2004, 108, 17301. (c)K. Book; H. Bassler.; A. Elschner; S. Kirchmeyer;Organic Electronics , 2003, 4, 227. (d)N. Drolet; S. Beaupr; J. Fran; C. Morin; Y. Tao; M. Leclerc; J. Opt. A: Pure Appl. Opt, 2002, 4, S252. 9. Deng, Z.; Lee, S.; Webb, D. P.; Chan, Y. C.; Gambling, W. A. Syn. Met. 1999, 107, 107 . 10. O’Brien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B. E.; Loy, D. E.; Thompson, M. E. Adv. Mater. 1998, 10, 1108. 11. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 12. Thompson, M. E.; Loy, D. E.; Koene, B. E. Adv. Funct. Mater. 2002, 12, 245. 13. H. Fujikawa, M. Ishii, S. Tokito, Y. Taga, Mater. Res. Soc. Symp. Proc. 2000, 621, Q3.4.1. 14. J. Salbeck, N. Yu, Bauer, F. Weissotel, H. Bestgen, Synth. Met., 1997, 91, 209. 15. Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714. 16. Noda, T.; Ogawa, H.;Shirota, Y. Adv. Mater. 1999, 11, 283. 17. Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5,935,721, Aug. 10, 1999. 18. Kan, Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.; Qui, Y. Appl. Phys. Lett. 2004, 84, 1513. 19. S. Lamansky, P.; Djurovuch, D.; Murphy, F.; Abdel-Razzaq, H. E.; Lee, C. ;Adachi, P. E.; Burrows, S. R.; Forrest, M. E.; Thompson, J. Am. Chem. Soc., 2001, 123, 4304. 20. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082. 21. R. J. Holmes, S. R. Forrest, Y. –J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett.,2003, 82, 2422. 22. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys. Lett., 2003, 83, 569. 23. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater., 2004, 16, 4743. 24. S. J. Yeh, W. C. Wu, C. T. Chen, Y. H. Song,Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen, Adv.Mater., 2005, 17, 285. 25. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. 26. Wei, Y.; Chen, C.-T. J. Am. Chem. Soc. 2007, 129, 7478. 27. (a)Y. Zheng, Y. Liang, H. Zhang, Q. Lin, G. Chuan, S. Wang, Mater. Lett. 2002, 53, 52. (b)N. A. H. Male, O. V. Salata, V. Christou, Synth. Met. 2002, 126, 7. 28. (a)X. Jiang, K.-Y. Jen, B. Carlson, L. R. Dalton, Appl. Phys. Lett., 2002, 80, 713. (b)J. H.Kim, M. S. Liu, A. K.-Y. Jena, B. Carlson, L. R. Dalton, C. F. Shu, R. Dodda, Appl. Phys. Lett., 2003, 83, 776. (c)Y. L. Yung, P. C. Wu, C. S. Liu, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Y. Tao, A. J. Carty, C. F. Shu, F. I. Wu, Organometallics, 2004, 23, 3745. 29. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4. 30. T. Watanabe, K. Nakamura, S. Kawami, Y. Fukuda, T. Tsuji, T. Wakimoto, S. Miyaguchi, M. Yahiro, M. J. Yang, T. Tsutsui, Synth. Met., 2001, 122, 203. 31. M. Ikai, S. Ichinosawa, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett., 2001, 79, 156. 32. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818. 33. R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sindair, V. S. Valencia, P. A. Cahil, Appl. Phys. Lett., 1995, 66, 3618. 34. T. Yasuda, Y. Yamaguchi, D.-C. Zou, T. Tsutsui, Jpn. J. Appl. Phys. Part1, 2002, 41, 5626. 35.(a)C. Adachi,T. Tsutsui, S. Saito, Appl. Phys. Lett.,1989, 55, 1489. (b)C. Adachi,T. Tsutsui, S. Saito, Appl. Phys. Lett.,1990, 56, 799. 36. J. Kido, K. Hongawa, K. Okuuyama, K. Nagai, Appl. Phys. Lett., 1993, 63, 2627. 37. J. Shi, C. W. Tang, C. H. Chen, U.S. 5646948, 1999. 38. C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, Y.-Y. Chien, J. Am. Chem. Soc., 2003, 125, 3710. 39. Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Bongini, A.; Arbizzani, C.; Mastragostino, M.; Anni, M.; Gigli, G.; Cingolani, R. J. Am. Chem. Soc. 2000, 122(48), 11971-11978. 40. Facchetti, A.; Mushrush, M.; Yoon, M.-H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126(42), 13859-13874. 41. 羅志平, 博士論文:有機薄膜材料電荷傳遞性質之理論研究。 2006年。 42. Harlan Lee Lewis, Theodore Lawrence Brown J. Am. Chem. Soc. 1970, 92(15), 4664-4670. 43. Yoon, M.-H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006, 128(17), 5792-5801.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/27642

3

Authors: 吳韋民, Wei-Min Wu

Contributors: 胡塵滌, Chen-Ti Hu

Time: 27

File Description: 155 bytes; text/html

Relation: [1] L.C. Chang and T.A. Read, Trans. AIME., 189(1951) ,p.47. [2] H. Pops and T. B. massalski. Trans. AIME, 230 (1964) 1662 [3] C.M. Wayman, “Some Applications of Shape-memory Alloys”, Journal of Metals, 32(1980) ,p.p.129-137. [4] K. Otsuka and K. Shimuzu, “Development of Shape Memory Alloys” , ISIJ International. Rev., 29(1989), p.p.353-377. [5] L. M Schetky, “Shape memory alloys”, Scientific American, 241(1979), p.p.74-82. [6] V.V. Kokorin and M. Wuttig, “Magnetostriction in ferromagnetic shape memory alloys”, Journal of Magnetic and Magnetic Materials 234(2001), p.p.25-30. [7] K. Ullakko, J. k. Huang, C.Kantner, C. O’Handley and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals “,Applied Physics Letter 69(1996), p.p.1966-1968. [8] T. Kakeshita, K.Shimizu, S.Funada and M.Date, Trans., ” Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys”, Transactions of the JAPAN Institute of Metals 25(1984), p.p.837-844. [9] Y. Furuya, N. W. Hagood, H. Kimura and T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at %Pd alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254. [10] S. J. Murray, M. Marioni, S. M. Allen, R.C. O’Handley and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga“, Applied Physics Letters 77(2000), p.p.886-888. [11] C. Y. Yu, 國立清華大學碩士論文“FePdPt, FePdAu 鐵磁性形狀記憶合金磁性質及形狀記憶效應研究”, 第3章2005, p.p.47-120. [12] L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 1. Structural and Microstructural Changes Associated with Transformations“, Journal of Materials Science 9(1974), p.p.1521-1535. [13] R. V. Krishnan, L. Delaet, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 2. Macroscopic Mechanical-Behavior”, Journal of Materials Science 9(1974), p.p.1536-1544. [14] H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 3. Thermodynamics and Kinetics”, Journal of Materials Science 9(1974), p.p.1545-1555. [15] T. Tadaki, K. Otsuka and K. Shimizu, “Shape Memory Alloys”, Annual Review of Materials Science, 18(1988), p.p.25-45. [16] D. P. Dunne and C. M. Wayman, “Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features”, Metallurgical Transactions 4(1973), p.p.147-152. [17] T. A. Schroder and C. M. Wayman, “2-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals “, Scripta Metallurgica 11(1977), p.p.225-230. [18] B. D. Cullity, “Introduction to Magnetic Materials”, Chap.8, 1972, p.p.248-285. [19] D. Gignoux and M. Schlenker , “MagnetismⅠ Fundamantals”, chapter 3 and 12,(2002), p.p. 79-103 and p.p 351-396. [20] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, “Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions”, Smart Materials(accepted), 2005. [21] J. Cui, T.W. Shield and R.D. James, “Phase Transformation and Magnetic Anisotropy of An Iron-Palladium Ferromagnetic Shape-Memory Alloy “, Acta Materialia 52(2004), p.p.35-47. [22] K. Ullakko, J.K. Huang, V.V. Kokorin and R.C. O’Handley, “Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics “Scripta Materialia 36(1997), p.p.1133-1138. [23] K. Ullakko, “Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials“, Joural of Materials Engineering and Performance 5(1996), p.p.405-409. [24] 金重勳主編,“磁性技術手冊”,第31章 (2002), p.p. 409-419. [25]K. Tanaka, T. Ichitsubo and M. Koiwa, “Effect of External Fields on Ordering of FePd “Material Science and Engineering A 312 (2001), p.p.118-127. [26]P.R. Aitchison, J.N. Chapman, V. Gehanno, I.S. Weir, M.R. Scheinfein, S. McVitie and A. Marty, “High Resolution Measurement and Modelling of Magnetic Domain Structures in Epitaxial FePd (001) L1(0) Films With Perpendicular magnetisation”, Journal of Magnetism and Magnetic Materials 223(2001), p.p.138-146. [27]T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi and F. Abe, “Theoretical Investigation of L1(0)-Disorder Phase Equilibria in Fe-Pd Alloy System “, Journal of Alloys and Compounds 317-318(2001), p.p.13-18. [28]L.S. Wang, Z.H. Fan and D.E. Laughlin, “Trace Analysis For Magnetic Domain Images of L1(0) Polytwinned Structures “, Scripta Materialia 47(2002), p.p.781-785. [29] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys”, Mrs Bulletin 27 (2002), p.p.105-109. [30] Y. Furuya, N. W. Hagood, P. Kimura and T. Watanabe, “Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6 at %Pd Alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254. [31] Y. W. Wang, 國立清華大學碩士論文“Fe-Pd鐵磁性形狀記憶合金添加第三元素之研究”,第3章2004, p.p.39-64. [32] M. Sugiyama, R.Oshima and F.E. Fujita, “Martensitic- Transformation in the Fe-Pd Alloy System“, Transactions of the JAPAN Institute of Metals25(1984), p.p.585-592. [33] R. Hultgren and C.A. Zapffe, Nature 142(1938), p.395 [34]T. Sohmura, R. Oshima and F.E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy“, Scripta Metallurgica. 14(1980), p.p.855-856. [35] R. Oshima, “Successive Martensitic Transformations in Fe-Pd Alloys“, Scripta Metallurgica 15(1981), p.p.829-833. [36] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT Thermoelastic Martensite-Transformation in Fe-Pd Alloys“, Transactions of the JAPAN Institute of Metals 27(1986), p.p.719-730. [37] H. Kato, Y. Liang and M. Taya, “Stress-induced FCC/FCT Phase Transformation in Fe-Pd Alloy “, Scripta Materialia 46(2002), p.p471-475. [38] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “Solid-Solution Structure and the Weakly First-Order Displacive Transformation in Fe-Pd Alloys “, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 28(1997), p.p. 527-536. [39] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics 37(2001), p.p.2675-2677. [40] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya and T. Mori, “Martensite Structure in Polycrystalline Fe-Pd “, Materials Science and Engineering A 332(2002), p.p134-139. [41]Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya and T. Mori, “Straining of a polycrystal of Fe-Pd with martensite structure by uniaxial loading “, Materials Science and Engineering A 338(2002), P.P. 89-96. [42] M. Matsui, T. Shimizu, H. Yamada snd K.Adachi, “Magnetic-Properties and Thermal-Expansion of Fe-Pd Invar- Alloys“, Journal of Magnetism and Magnetic Materials 15-18(1980), p.p. 1201-1202. [43] T. Kubota, T. Okazaki, H. Kimura, T. Watanbe, M. Wutting and Y. Furuya, “Effect of Rapid Solidification on Giant Magnetostriction in Ferromagnetic Shape Memory Iron-based Alloys”, Science and Technology of Advanced Materials 2(2002), p.p.201-207. [44] S. Inoue, K. Inoue, K. Koterazawa and K. Mizuuchi, “Shape Memory Behavior of Fe-Pd Alloy Thin Films Prepared by DC Magnetron Sputtering “, Materials Science and Engineering A 339(2003), p.p.29-34. [45] S. Inoue, K. Inoue, S. Fujita and K. Koterazawa, “Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering “, Materials Transactions 44(2003), p.p.298-304. [46] D. Vokoun and C.T. Hu, “Two-Way Shape Memory Effect in Fe-28-8 at.% Pd Melt-Spun Ribbons “, Scripta. Materialia. 47(2002), p.p.453-457. [47]D. Vokoun and C.T. Hu, “Improvement of Shape Memory Characteristics in Fe-Pd Melt-Spun Shape Memory Ribbons “, Journal of Alloys and Compounds 346(2002), p.p.147-153. [48] R.D. James and M. Wuttig, “Magnetostriction of Martensite” Philosophical Magazine A 77(1998), p.p.1273-1299. [49] J. Koeda, Y. Nakamura, T. Gukuda, T. Kakeshita, T. Takeuchi and K. Kishio, Trans. Mat. Res. Soc. Jap. 26(2001), p.215 [50] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics. 37(2001), p.p.2675-2677. [51] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys “MRS Bulletin 27(2002), p.p.105-109. [52] T. Kubota, T. Okazaki, Y. Furuya and T. Watanabe, “Large Magnetostriction in Rapid-Solidified Ferromagnetic Shape Memory Fe-Pd Alloy “, Journal of Magnetism and Magnetic Materials 239(2002), p.p.551-553. [53] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Science and Technology of Advanced Materials 3(2002), p.p.165-169. [54] T. Okazaki, H. Nakajima and Y. Furuya, “Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon Under Tensile Stress”, Materials Transactions 44(2003), p.p.665-668. [55] Y. Liang, Y. Sutou, T. Wada, C. C. Lee, M. Taya, T. Mori., “Magnetic Field-Induced Reversible Actuation Using Ferromagnetic Shape Memory Alloys”, Scripta Materialia 48 (2003), p.p.1415-1419. [56] R.A. Stern, S.D. Willoughby, A. Ramirez J.M. MacLaren, J. Cui, Q. Pan and R.D. James, “Electronic and Structural Properties of Fe3Pd-Pt Ferromagnetic Shape Memory Alloys”, Journal of Applied Physics 91(2002), p.p.7818-7820. [57] T. Wada, T. Tagawa and M. Taya, “Martensitic Transformation in Pd-rich Fe-Pd-Pt Alloy”, Scripta Materialia 48(2003), p.p.207-211. [58] K. Tsuchiya, T. Nojiri, H. Ohtsuka and M. Umemoto, “Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys”, Materials. Transactions 44(2003), p.p.2499-2502. [59] 施志超,國立清華大學博士論文, “RT2材料的磁伸縮與磁性研究” 第2章,2002, p.p.7-29. [60] 樣品震盪磁測試儀(VSM),儀器介紹,國立交通大學光資訊儲存實驗室網頁. [61] H. X. Zheng, J. Liu, M. X. Xia, J. G. Li, “Martensitic transformation of Ni-Fe-Ga-(Co, Ag) magnetic shape memory alloys”, Journal of Alloys and Compounds 387(2005), p.p.265-268. [62] Y. Sutou, R. Kainuma, K. Ishida, “Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys”, Materials Science and Engineering A 273-275(1999), p.p.375-379. [63] K.T.Oh, U.H. Joo, G.H. Park, C.J. Hwang, K.N. Kim, “Effect of Silver Addition on the Properties of Nickel-Titanium Alloys for Dental Application”, Journal of BiomedicalI Materials Research part B-APPLIED BIOMATERIALS 76B (2) (2006) p.p. 306-314. [64] M. Matsui, H. Yamada, K. Adachi, “A New Low-Temperature Phase (FCT) of Fe-Pd Invar”, Journal of the Physical Society of JAPAN 48(1980), p.p.2161-2162. [65] C.T. Hu, T. Goryczka and D. Vokoun, “Effects of the Spinning Wheel Velocity on the Microstructure of Fe-Pd Shape Memory Melt-Spun Ribbons”, Scripta Materialia 50(2004), p.p.539-542. [66] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya and T. Mori, “Structural Change and Straining in Fe-Pd Polycrystals by Magnetic Field”, Materials Science and Engineering A 361(2003), p.p.75-82.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34663

4

Contributors: 馬席彬, Hsi-Pin Ma

Time: 45

File Description: 155 bytes; text/html

Relation: [1] IEEE std. 802.11a-1999, 30 Dec. 1999. [2] K. Wongthavarawat and A. Ganz, “IEEE 802.16 Based Last Mile Broadband Wireless Military Networks with Quality of Service Support,” IEEE Military Commun. , vol. 2, pp. 779-784, Oct. 2003. [3] IEEE std. 802.16-2004, Oct. 2004. [4] Draft Amendment to IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems– Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands (IEEE P802.16e/D2), April, 2004. [5] John G. Proakis, “Digital Communications,” New York: McGraw- Hell, 1995. [6] G. Singh and A. Alphones, “OFDM Modulation Study for a Radio-over-Fiber System for Wireless LAN (IEEE 802.11a),” In Proc. Commun. , vol. 3, pp. 1460-1464, Dec. 2003. [7] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM --- Part I,” IEEE Trans. Commun., vol. 49, pp. 1668-1677, Nov. 1999. [8] M. Speth, S. A. Fetchtel, and H. Meyr, “Optimum Receiver Design for OFDM-Based Broadband Transmission --- Part II: A Case Study,” IEEE Trans. Commun., vol. 49, pp. 571-578, April 2001. [9] S. Johansson, P. Nilsson, and M. Torkelson, “Implementation of an OFDM Synchronization Algorithm,” Circuits and Systems, 1999. 42nd, vol. 1, pp. 228-231, Aug. 1999. [10] A. Fort and W. Eberle, “Synchronization and AGC Proposal for IEEE 802.11a Burst OFDM Systems,” Global Telecom. , vol. 3, pp. 1335-1338, Dec. 2003. [11] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “An Improved Combined Symbol and Sampling Clock Synchronization Method for OFDM Systems,” Wireless commun. and Network 1999, vol. 3, pp. 1153-1157, Sept. 1999. [12] N. Mochizuki, Y. Matsumoto, M. Mizoguchi, T. Onizawa, and Y. Matsumato, “A High Performance Frequency and Timing Synchronization Technique for OFDM,” Global Telecom. vol. 6, pp. 3443-3448, Nov. 1998. [13] S. A. Fechtel, “OFDM Carrier and Sampling frequency synchronization and its performance on stationary and mobile channels, ” IEEE Trans. Consum. , vol. 46, pp. 438-441, Aug. 2000. [14] J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML Estimation of Time and Frequency Offset in OFDM systems,” IEEE trans., vol. 45, pp.1800-1805, July 1997. [15] N. Balamurali and D. Jalihal, “An Efficient Algorithm for Joint Carrier Frequency Offset and Channel Estimation in IEEE 802.16 OFDM System,” Wireless com., 2004 1st International Symposium, pp. 428-432, 2004. [16] S. A. Fechtel, “ Performance of OFDM Carrier and Sampling Frequency Synchronization on Stationary and Mobil Channels,” IEEE trans. Consum. , pp. 18-19, 2000. [17] C. S. Peng and K. A. Wen, “Synchronization for Carrier Frequency Offset in Wireless LAN 802.11a System,” Wireless commun., The 5th International Symposium, vol. 3, pp. 1083-1087, Oct. 2002. [18] F. Classen and H. Meyr, “Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels,” IEEE Vehicular Technology Conference, 1994, Volume 3, pp. 1655-1659, June 1994. [19] A. V. Oppenheim, Ronald, and W. Schafer, “Discrete-Time Signal Processing,” Prentice-Hall, Inc., New Jersey, 1989. [20] S. W. Km and K. H. Tchah, “Performance Analysis of Adaptive Equalizer Design for OFDM Wireless LAN, ”IEEE Trans. Consum., vol.50, pp.512-516, May 2004. [21] S. A. Fechtel and A. Blaickner, “Efficient FFT and Equalizer implementation for OFDM Receivers,” IEEE Trans. Commun. , vol. 45, pp. 1104-1107, Nov. 1999. [22] F. M. Gardner, “Interpolation in digital modems—Part I: Fundamentals,” IEEE Trans. Commun., vol. 41, pp. 502-508, Mar. 1993. [23] F. M. Gardner, “Interpolation in digital modems—Part II: Implementation and Performance,” IEEE Trans. Commun., vol. 41, pp. 998-1008, June 1993. [24] P. Y. Tsai, H. Y. Kang, and T. D. Chiueh, “Joint weighted least squares estimation of frequency and timing offset for OFDM systems over fading channels,” IEEE Vehicular Technology Conference, 2003, Volume 4, pp. 2543-2547, April 2003. [25] D. K. Kim, S. H. Do, H. B. Cho, H. J. Choi, and K. B. Kim, “A New Joint Algorithm of Symbol Timing Recovery and Sampling Clock Adjustment for OFDM Systems,” IEEE trans. Consum. , vol. 44, pp. 1142-1149, Aug. 1998. [26] P. Y. Tsai and T. D. Chiueh, “Frequency-domain interpolation-based channel estimation in pilot-aided OFDM systems,” IEEE VTC, Spring, pp. 420- 424, May 2004. [27]IEEE std. 802.16.3c-01/29r2 July 2001. [28] T. Ha, S. Lee, and J. Jim, “Low-complexity correlation System for Timing Synchronization in IEEE802.11a Wireless LANs,” In Proc. Radio and Wireless conference, pp. 51-54, Aug. 2003. [29] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A New LVSI-Oriented FFT Algorithm and Implementation,” In Proc. IEEE International, pp. 337–341, 1998. [30] K. Y. Han, K. Ha, K. M. Sung, and C. W. Lee, “Time Domain Equalization Using Linear Phase Interpolation for OFDM in Time Variant Multipath Channels with Frequency Offset,” IEEE VTC, Spring, pp. 1255-1259, May 2000. [31] S. Armour, A. Nix, and D. Bull, “Complexity Evaluation for the Implementation of a Pre-FFT Equalizer in an OFDM Receiver,” IEEE trans. Consum. , vol. 46, pp. 428-437, Aug. 2000.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35810