Showing 1 - 6 results of 6 for search 'standard deviation' Narrow Search
5
Dissertation/ Thesis

Contributors: 賴美淑, 臺灣大學:預防醫學研究所

File Description: 662484 bytes; application/pdf

Relation: 1. Kerrigan-Baumrind L, Quigley H, Pease M. Number of ganglion cells in glaucoma eyes compared with threshold visual tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741-748. 2. Wang Y, Xu L, Jonas JB. Prevalence and causes of visual field loss as determined by frequency doubling perimetry in urban and rural adult Chinese. Am J Ophthalmol. 2006; 141: 1078-1086. 3. Bradley A, Rabin J, Freeman RD. Nonoptical determinants of aniseikonia. Invest Ophthalmol Vis Sci. 1983; 24: 507-512. 4. Strang N, Winn B, Bradley A. The role of neural and optical factors in limiting visual resolution in myopia. Vision Research. 1998; 38: 1713-1721. 5. Lin LLK, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004; 33: 27-33. 6. Ito A, Kawabata H, Fujimoto N, Adachi-Usami E. Effect of myopia on frequency-doubling perimetry. Invest Ophthalmol Vis Sci. 2001; 42: 1107-1110. 7. Kelly D. Frequency doubling in visual responses. J Opt Soc Am. 1996; 56: 1628-1633. 8. Dacey D. Physiology, morphology, and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994; 184: 12-28. 9. Quigley H, Dunkelberger G, Green WR et al. Chronic human glaucoma causing selective greater loss of large optic nerve fibers. Ophthalmology. 1988; 95: 357-363. 10. Glovinsky Y, QuigelyH, Dunkelberger G. et al. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1991; 32: 484-491. 11. Anderson R, O’Brien C. Psychophysical evidence for a selective loss of M ganglion cells in glaucoma. Vision Research. 1997; 37: 1079-1083. 12. Medeiros F, Sample P, Weinreb R. et al. Frequency doubling technology perimetry abnormalities as a predictors of glaucomatous visual field loss. Am J Ophthalmol. 2004; 137: 863-867. 13. Kogure S, Toda Y, Tsukahara S. Prediction of future scotoma on conventional automated perimetry using frequency doubling technology perimetry. Br J Ophthalmol. 2006; 90: 347-352. 14. Anderson AJ, Johnson CA. Mechanisms isolated by frequency-doubling technology perimetry. Invest Ophthalmol Vis Sci. 2002; 43:398-401. 15. Artes P, Nicolela MT, McCornick TA, LeBlanc RP, Chauban BC. Effects of blur and repeated testing on sensitivity estimates with frequency doubling technology perimetry. Ophthalmology. 2002; 109: 757-760. 16. Joson P, Kamntigue M, Chen P. Learning effects among perimetric novices in frequency doubling technology perimetry. Ophthalmoly. 2002; 109: 757-760. 17. Brush M, Chen P. Learning effect among perimetric novices with screening C-20-1 frequency doubling technology perimetry. Am J Ophthalmol. 2004; 137: 551-552. 18. Matsuo H, Tomita G, Suzuki Y, Araie M. Learning effect and measurement variability in frequency-doubling technology perimetry in chronic open-angle glaucoma. J Glaucoma. 2002; 11: 467-473. 19. Horani A, Frenkel S, Yahalom C, Farber MD, Ticho U, Blumenthal EZ. The learning effect in visual field testing of healthy subjects using frequency doubling perimetry. J Glaucoma. 2002; 11: 511-516. 20. Swanson W, Dul M, Fischer S. Quantifying effects of retinal illuminance on frequency doubling perimetry. Invest Ophthalmol Vis Sci. 2005; 46: 235-240. 21. Tanna AP, Abraham C, Lai J, Shen J. Impact of cataract on the results of frequency-doubling technology perimetry. Ophthalmology. 2004; 111: 1504-1507. 22. Kook MS, Yang SJ, Kim S, Chung J, Kim ST, Tchah H. Effect of cataract extraction on the results of frequency-doubling technology perimetry. Am J Ophthalmol. 2004; 138: 85-90. 23. Casson RJ, James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma. 2006; 15: 23-25. 24. Realini T, Lai M, Barber L. Impact of diabetes on glaucoma screening using frequency-doubling perimetry. Ophthalmology. 2004;111: 2133-2136. 25. Jones R. Do women and myopes have larger pupils? Invest Ophthalmol Vis Sci. 1990; 31: 1413-1415. 26. Chang SW, Tsai IL, Hu FR, Lin LLK, Shih YF. The cornea in young myopic adults. Br J Ophthalmol. 2001; 85: 916-920. 27. Fam HB, How ACS, Baskaran M, Lim KL, Chan YH, Aung T. Central corneal thickness and its relationship to myopia in Chinese adults. Br J Ophthalmol. 2006; 90: 1451-1453. 28. Olveira C, Tello C, Liebmann J, Ritch R. Central corneal thickness is not related to anterior scleral thickness or axial length. J Glaucoma. 2006; 15:190-194. 29. Troilo D, Xiong M, Crowley JC, Finlay BL. Factors controlling the dendritic arborization of retinal ganglion cells. Visual Neuroscience. 1996; 13: 721-733. 30. Subbaram M, Bullimore M. Visual acuity and the accuracy of the accommodative response. Ophthalmic and Physiological Optics. 2002; 22: 312-318. 31. Collins J, Carney L. Visual performance in high myopia. Current Eye Research. 1990; 9: 217-223. 32. Risse JF, Saint-Blancat P, Boissonnot M, Grillot L. Spatial contrast sensitivity in patients with severe myopia. Journal Francais d Ophthalmologie. 1996; 19: 271-277. 33. Liou S, Chiu C. Myopia and contrast sensitivity function. Current Eye Research. 2001; 22: 81-85. 34. Rudnicka A, Edgar D. Automated static perimetry in myopes with peripapillary crescents - Part I. Ophthal Physiol Opt. 1995; 15: 409-412. 35. Rudnicka A, Edgar D. Automated static perimetry in myopes with peripapillary crescents - Part II. Ophthal Physiol Opt. 1996; 16: 416-429. 36. Cazepita D, Chmielewska I. Changes in the static visual field of patients with low and medium myopia. Annales Academiae Medicae Stetinesis. 2004; 50: 21-24. 37. Anderson AJ, Johnson CA, Fingeret M, et al. Characteristics of the normative database for the Humphrey Matrix perimeter. Invest Ophthalmol Vis Sci. 2005; 46: 1540-1548. 38. Cubbidge R. Visual fields. First ed. Eye Essential, ed Doshi S, Harvey W. 2005: Elseviier. 62-69. 39. Cubbidge R. Visual fields. First ed. Eye Essential, ed Doshi S, Harvey W. 2005: Elseviier. 18-22. 40. Heijl A, Krakau C. A note of fixation during perimetry. Acta Ophthalmol (Copenh). 1997; 55: 854-861. 41. Cnaan A. Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statist Med. 1997; 16: 2349-2380. 42. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia. The Blue Mountain Eye Study. Ophthalmology. 1999; 106: 2010-2015. 43. Suzuki Y, Iwase A, Araie M. et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006; 113: 1613-1617. 44. Crodium K, Heijl A, Bengtsson B. Refractive error and glaucoma. Acta Ophthalmol Scand. 2001; 79: 560-566. 45. Chui TYP, Yap MKH, Chan HL, Thibos LN. Retinal stretching limits peripheral visual acuity in myopia. Vision Research. 2005; 45: 593-605. 46. Anderson A, Johnson C. Frequency-doubling technology perimetry. Ophthal Clin North Am. 2003; 16: 213-225. 47. Wall M, Neahring R, Woodward K. Sensitivity and specificity of frequency doubling perimetry in neuron-ophthalmic disorers: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci. 2002; 43: 1277-1283. 48. Johnson C, Cioffi GA, Van Buskirk E, Frequency doubling technology using a 24-2 stimulus presentation pattern. Invest Ophthalmol Vis Sci. 1999; 76: 571-581.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/59197; http://ntur.lib.ntu.edu.tw/bitstream/246246/59197/1/ntu-96-R94846003-1.pdf

6
Dissertation/ Thesis

Contributors: 呂理平, 臺灣大學:化學工程學研究所

File Description: 1828416 bytes; application/pdf

Relation: Arena, U., A. Cammarota and M. L. Mastellone, "The Influence of Operating Parameters on The Behavior of A Small Diameter L-valve", in Fluidization IX, L. S. Fan and T. M. Knowlton (Eds.), pp. 365-372, Engineering Foundation, New York (1998a). Arena, U., C. B. Langeli and A. Cammarota, "L-valve Behaviour With Solid of Different Size and Density", Powder Technol., 98, 231-240 (1998b). Daous, M. A. and A. A. Al-Zahrani, "Modeling Solids and Gas Flow Through an L-valve", Powder Technol., 99, 86-89 (1998). Geldart, D., "Types of Gas Fluidization", Powder Technol., 7, 285-292 (1973). Geldart, D. and P. Jones, "The Behaviour of L-valves With Granular Powders", Powder Technol., 67, 163-174 (1991). Karri, S. B. R. and T. M. Knowlton, "Comparison of Group A and Group B Solids Flow in Underflow Standpipes", in Fluidization VII, O. E. Potter and D. J. Nicklin (Eds.), pp. 345-352, Engineering Foundation, New York (1992). Knowlton, T. M., "Nonmechanical Solids Feed and Recycle Devices For Circulating Fluidized Beds", in Circulating Fluidized Bed Technology II, P. Basu and J. F. Large (Eds.), pp. 31-41, Pergamon, Oxford (1988). Knowlton, T. M., "Standpipes and Return Systems", in Circulating Fluidized Beds, J. Grace, A.A. Avidan and T.M. Knowlton (Eds.), Chap. 7, pp. 214-260, Blackie Academic and Professional, London (1997). Knowlton, T. M. and I. Hirsan, "L-valves Characterized for Solids Flow", Hydrocarbon Proc., 57, 149-156 (1978). Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in Gas Fluidization Technology, D. Geldart (Eds.), Chap. 12, pp. 341-414, Wiley, New York (1986). Knowlton, T. M., “Standpipes and Nonmechanical valves”, in Handbook of Fluidization and Fluid-Particle systems, W. C. Yang (Eds.), Chap. 21, pp. 571-597, Marcel Dekker, New York (2003). Kunii, D. and O. Levenspiel, "Fluidization Engineering", Butterworth - Heinemann, Boston, MA, USA (1991). Leung, L. S. and P. J. Hones, "Flow of Gas-Solid Mixtures in Standpipes. A Review.", Powder Technol., 20, 145-160 (1978). Loung, P. H. and S. C. Bhattacharya, "A Study of Solid Circulation Rate in A Circulating Fluidized Bed", Int. J. Energy Research, 17, 479-490 (1993). Molodtsof, Y., A. Ould-Dris and J. F. Large, "A Classification and Design Method For Moving Bed Flow in Pipes", Powder Technol., 87, 49-57 (1996). Ozawa, M., S. Tobita, T. Mii, Y. Tomoyasu, T. Takebayashi and K. Suzuki, "Flow Pattern and Flow Behavior of Solid Particles in L-valve", in Circulating Fluidized Bed Technology III, P. Basu, M. Horio and M. Hasatani (Eds.), pp. 615-620, Pergamon, Oxford (1991). Petter, O. E. and M. Simpson, "L-valves in A Multi-Stage Gas-Solids Countercurrent Fluidized Bed System", in Fluidization IX, L. S. Fan and T. M. Knowlton (Eds.), pp. 373-380, Engineering Foundation, New York (1998). Rhodes, M. and H. Cheng, "Operation of An L-valve in A Circulating Fluidized Bed of Fine Solids", in Circulating Fluidized Bed Technology IV, A. A. Avidan (Eds.), pp. 240-245, AIChE, New York (1993). Rudolph, V., Y. O. Chong and D. J. Nicklin, "Standpipe Modelling for Circulating Fluidized Beds", in Circulating Fluidized Bed Technologh III, P. Basu, M. Horio and M. Hasatani (Eds.), pp. 49-64, Pergamon, Oxford (1991). Smolders, K. and J. Baeyens, "The Operation of L-valves to Control Standpipe Flow", Advanced Powder Technol., 6 (3), 163-176 (1995). Tong, H., H. Li, X. Lu and Q. Zheng, "Hydrodynamic Modeling of The L-valve", Powder Technol., 129, 8-14 (2003). Wen, C. Y. and Y. H. Yu, “Mechanics of Fluidization”, Chem. Eng. Prog. Symp. Ser., 62 (62), 100-111 (1966). Yang, W. C. and T. M. Knowlton, "L-valve Equations", Powder Technol., 77, 49-54 (1993). Zheng, Y. Q., Z. W. Ma and A. B. Wang, "Experimental Study of The Flow Pattern and Flow Behaviour of Gas-Solid Two Phase Flow in L-valve", in Circulating Fluidized Bed Technology IV, A. A. Avidan (Eds.), pp. 246-252, AIChE, New York (1993). 胡慶元, 景山, 王金福, 金涌, "L閥在氣力輸送中的應用", 化學反應工程與工藝, 17, 3, 244-248 (2001). 黃文迪, 許國良, 李宏順, 康忠新, "L閥控制物料循環的數學模型及其應用", 華中理工大學學報, 23, 4, 100-104 (1995). 蕭世梁, "B類粒子於快速流體化床中之軸向空隙度分布", 化工系碩士論文, 國立台灣大學, 台北, 台灣 (1993). 黃文濬, "循環式流體化床之壓力擾動訊號分析", 化工系碩士論文, 國立台灣大學, 台北, 台灣 (2003).; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/52199; http://ntur.lib.ntu.edu.tw/bitstream/246246/52199/1/ntu-93-R91524083-1.pdf